Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical C Programming

You're reading from   Practical C Programming Solutions for modern C developers to create efficient and well-structured programs

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781838641108
Length 616 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
B. M. Harwani B. M. Harwani
Author Profile Icon B. M. Harwani
B. M. Harwani
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Working with Arrays 2. Managing Strings FREE CHAPTER 3. Exploring Functions 4. Preprocessing and Compilation 5. Deep Dive into Pointers 6. File Handling 7. Implementing Concurrency 8. Networking and Inter-Process Communication 9. Sorting and Searching 10. Working with Graphs 11. Advanced Data Structures and Algorithms 12. Creativity with Graphics 13. Using MySQL Database 14. General-Purpose Utilities 15. Improving the Performance of Your Code 16. Low-Level Programming 17. Embedded Software and IoT 18. Applying Security in Coding 19. Other Books You May Enjoy

Creating minimum spanning trees using Kruskal's algorithm

In this recipe, we will learn how to make a minimum spanning tree using Kruskal's algorithm. 

A minimum/minimal spanning tree of an undirected graph is a tree that is formed from graph edges that connect all of the vertices of the graph at the lowest total cost. A minimum spanning tree can exist if, and only if, the graph is connected. A graph is said to be connected if there exists a path between any two vertices.

Here, the nodes of the graph are initially considered as n distinct partial trees with one node each. At each step of the algorithm, two distinct partial trees are connected into a single partial tree by an edge of the graph. When only one partial tree exists (for instance, after n-1 such steps), it is a minimum spanning tree.

The connecting arc of minimum cost is used to connect two distinct...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image