Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Statistical Application Development with R and Python

You're reading from   Statistical Application Development with R and Python Develop applications using data processing, statistical models, and CART

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher
ISBN-13 9781788621199
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Data Characteristics FREE CHAPTER 2. Import/Export Data 3. Data Visualization 4. Exploratory Analysis 5. Statistical Inference 6. Linear Regression Analysis 7. Logistic Regression Model 8. Regression Models with Regularization 9. Classification and Regression Trees 10. CART and Beyond Index

Summary

In this chapter, we began with a hypothetical dataset and highlighted the problem of overfitting. In case of a breakpoint, also known as knots, the extensions of the linear model in the piecewise linear regression model and the spline regression model were found to be very useful enhancements. The problem of overfitting can also sometimes be overcome by using the ridge regression. The ridge regression solution has been extended for the linear and logistic regression models. Finally, we saw a different approach of model assessment by using the train, validate, and test approach and the cross-validation approach.

In spite of the developments where we have intrinsically non-linear data, it becomes difficult for the models discussed in this chapter to emerge as useful solutions. The past two decades has witnessed a powerful alternative in the so-called Classification and Regression Trees (CART). The next chapter discusses CART in greater depth, and the final chapter considers modern...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image