Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Extending and Modifying LAMMPS Writing Your Own Source Code

You're reading from   Extending and Modifying LAMMPS Writing Your Own Source Code A pragmatic guide to extending LAMMPS as per custom simulation requirements

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781800562264
Length 394 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jichen Li Jichen Li
Author Profile Icon Jichen Li
Jichen Li
Dr. Shafat Mubin Dr. Shafat Mubin
Author Profile Icon Dr. Shafat Mubin
Dr. Shafat Mubin
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Section 1: Getting Started with LAMMPS
2. Chapter 1: MD Theory and Simulation Practices FREE CHAPTER 3. Chapter 2: LAMMPS Syntax and Source Code Hierarchy 4. Section 2: Understanding the Source Code Structure
5. Chapter 3: Source Code Structure and Stages of Execution 6. Chapter 4: Accessing Information by Variables, Arrays, and Methods 7. Chapter 5: Understanding Pair Styles 8. Chapter 6: Understanding Computes 9. Chapter 7: Understanding Fixes 10. Chapter 8: Exploring Supporting Classes 11. Section 3: Modifying the Source Code
12. Chapter 9: Modifying Pair Potentials 13. Chapter 10: Modifying Force Applications 14. Chapter 11: Modifying Thermostats 15. Assessments 16. Other Books You May Enjoy Appendix A: Building LAMMPS with CMake 1. Appendix B: Debugging Programs 2. Appendix C: Getting Familiar with MPI 3. Appendix D: Compatibility with Version 29Oct20

Example of evaluating

In this section, we demonstrate the MPI process with an example of approximating the value of using broadcast and reduction operations of group communication. We observe that can be calculated by evaluating the following integral:

Substituting , we get the following:

Therefore, the area contained between x=0 and x=1 under the f(x) curve gives the value of , as illustrated in the following graph:

Figure 14.8 – Approximation of the area under in the range

As you can see, this area can be approximated by the area of N rectangular slices, as shown in the graph, with each slice occupying a width of 1/N.

The approximation for is therefore expressed as a sum of rectangle areas, where the width of each rectangle is 1/N and the height is the value f(x) at the midpoint of each rectangle:

The following screenshot shows the C++ code (calcpi.cpp) that calculates...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image