Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Create succinct and expressive implementations with functional programming in Python

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784396992
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introducing Functional Programming 2. Introducing Some Functional Features FREE CHAPTER 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements Index

What you need for this book

This book presumes some familiarity with Python 3 and general concepts of application development. We won't look deeply at subtle or complex features of Python; we'll avoid much consideration of the internals of the language.

We'll presume some familiarity with functional programming. Since Python is not a functional programming language, we can't dig deeply into functional concepts. We'll pick and choose the aspects of functional programming that fit well with Python and leverage just those that seem useful.

Some of the examples use Exploratory Data Analysis (EDA) as a problem domain to show the value of functional programming. Some familiarity with basic probability and statistics will help with this. There are only a few examples that move into more serious data science.

You'll need to have Python 3.3 or 3.4 installed and running. For more information on Python, visit http://www.python.org/.

In Chapter 14, The PyMonad Library, we'll look at installing this additional library. If you have Python 3.4 ,which includes pip and Easy Install, this will be very easy. If you have Python 3.3, you might have already installed pip or Easy Install or both. Once you have an installer, you can add PyMonad. Visit https://pypi.python.org/pypi/PyMonad/ for more details.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image