Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
SAS for Finance

You're reading from   SAS for Finance Forecasting and data analysis techniques with real-world examples to build powerful financial models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788624565
Length 306 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Harish Gulati Harish Gulati
Author Profile Icon Harish Gulati
Harish Gulati
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Time Series Modeling in the Financial Industry FREE CHAPTER 2. Forecasting Stock Prices and Portfolio Decisions using Time Series 3. Credit Risk Management 4. Budget and Demand Forecasting 5. Inflation Forecasting for Financial Planning 6. Managing Customer Loyalty Using Time Series Data 7. Transforming Time Series – Market Basket and Clustering 8. Other Books You May Enjoy

Forecasting across industries

Since one of the primary uses of time series data is forecasting, it's wise that we learn about some of its fundamental properties. To understand what the industry means by forecasting and the steps involved, let's visit a common misconception about the financial industry: only lending activities require forecasting. We need forecasting in order to grant personal loans, mortgages, overdrafts, or simply assess someone's eligibility for a credit card, as the industry uses forecasting to assess a borrower's affordability and their willingness to repay the debt. Even deposit products such as savings accounts, fixed-term savings, and bonds are priced based on some forecasts. How we forecast and the rationale for that methodology is different in borrowing or lending cases, however. All of these areas are related to time series, as we inevitably end up using time series data as part of the overall analysis that drives financial decisions. Let's understand the forecasts involved here a bit better. When we are assessing an individual's lending needs and limits, we are forecasting for a single person yet comparing the individual to a pool of good and bad customers who have been offered similar products. We are also assessing the individual's financial circumstances and behavior through industry-available scoring models or by assessing their past behavior, with the financial provider assessing the lending criteria.

In the case of deposit products, as long as the customer is eligible to transact (can open an account and has passed know your customer (KYC), anti-money laundering (AML), and other checks), financial institutions don't perform forecasting at an individual level. However, the behavior of a particular customer is primarily driven by the interest rate offered by the financial institution. The interest rate, in turn, is driven by the forecasts the financial institution has done to assess its overall treasury position. The treasury is the department that manages the central bank's money and has the responsibility of ensuring that all departments are funded, which is generated through lending and attracting deposits at a lower rate than a bank lends. The treasury forecasts its requirements for lending and deposits, while various teams within the treasury adhere to those limits. Therefore, a pricing manager for a deposit product will price the product in such a way that the product will attract enough deposits to meet the forecasted targets shared by the treasury; the pricing manager also has to ensure that those targets aren't overshot by a significant margin, as the treasury only expects to manage a forecasted target.

In both lending and deposit decisions, financial institutions do tend to use forecasting. A lot of these forecasts are interlinked, as we saw in the example of the treasury's expectations and the subsequent pricing decision for a deposit product. To decide on its future lending and borrowing positions, the treasury must have used time series data to determine what the potential business appetite for lending and borrowing in the market is, and would have assessed that with the current cash flow situation within the relevant teams and institutions.

You have been reading a chapter from
SAS for Finance
Published in: May 2018
Publisher: Packt
ISBN-13: 9781788624565
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image