Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Applied Deep Learning with Python
Applied Deep Learning with Python

Applied Deep Learning with Python: Use scikit-learn, TensorFlow, and Keras to create intelligent systems and machine learning solutions

Arrow left icon
Profile Icon Galea Profile Icon Luis Capelo
Arrow right icon
NZ$39.99 NZ$57.99
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5 (4 Ratings)
eBook Aug 2018 334 pages 1st Edition
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial
Arrow left icon
Profile Icon Galea Profile Icon Luis Capelo
Arrow right icon
NZ$39.99 NZ$57.99
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5 (4 Ratings)
eBook Aug 2018 334 pages 1st Edition
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Applied Deep Learning with Python

Data Cleaning and Advanced Machine Learning

The goal of data analytics, in general, is to uncover actionable insights that result in positive business outcomes. In the case of predictive analytics, the aim is to do this by determining the most likely future outcome of a target, based on previous trends and patterns.

The benefits of predictive analytics are not restricted to big technology companies. Any business can find ways to benefit from machine learning, given the right data.

Companies all around the world are collecting massive amounts of data and using predictive analytics to cut costs and increase profits. Some of the most prevalent examples of this are from the technology giants Google, Facebook, and Amazon, who utilize big data on a huge scale. For example, Google and Facebook serve you personalized ads based on predictive algorithms that guess what you are most likely...

Preparing to Train a Predictive Model

Here, we will cover the preparation required to train a predictive model. Although not as technically glamorous as training the models themselves, this step should not be taken lightly. It's very important to ensure you have a good plan before proceeding with the details of building and training a reliable model. Furthermore, once you've decided on the right plan, there are technical steps in preparing the data for modeling that should not be overlooked.

We must be careful not to go so deep into the weeds of technical tasks that we lose sight of the goal. Technical tasks include things that require programming skills, for example, constructing visualizations, querying databases, and validating predictive models. It's easy to spend hours trying to implement a specific feature or get the plots looking just right. Doing this sort...

Training Classification Models

As we've already seen in the previous chapter, using libraries such as scikit-learn and platforms such as Jupyter, predictive models can be trained in just a few lines of code. This is possible by abstracting away the difficult computations involved with optimizing model parameters. In other words, we deal with a black box where the internal operations are hidden instead. With this simplicity also comes the danger of misusing algorithms, for example, by overfitting during training or failing to properly test on unseen data. We'll show how to avoid these pitfalls while training classification models and produce trustworthy results with the use of k-fold cross-validation and validation curves.

Introduction to Classification Algorithms

...

Summary

In this chapter, we have seen how predictive models can be trained in Jupyter Notebooks.

To begin with, we talked about how to plan a machine learning strategy. We thought about how to design a plan that can lead to actionable business insights and stressed the importance of using the data to help set realistic business goals. We also explained machine learning terminologies such as supervised learning, unsupervised learning, classification, and regression.

Next, we discussed methods for preprocessing data using scikit-learn and pandas. This included lengthy discussions and examples of a surprisingly time-consuming part of machine learning: dealing with missing data.

In the latter half of the chapter, we trained predictive classification models for our binary problem, comparing how decision boundaries are drawn for various models such as the SVM, k-Nearest Neighbors, and...

Left arrow icon Right arrow icon

Key benefits

  • Designed to iteratively develop the skills of Python users who don’t have a data science background
  • Covers the key foundational concepts you’ll need to know when building deep learning systems
  • Complete with step-by-step exercises and activities to help you build the skills you need for the real world

Description

Taking an approach that uses the latest developments in the Python ecosystem, you’ll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before you train your first predictive model. You’ll then explore a variety of approaches to classification such as support vector networks, random decision forests and k-nearest neighbors to build on your knowledge before moving on to advanced topics. After covering classification, you’ll go on to discover ethical web scraping and interactive visualizations, which will help you professionally gather and present your analysis. Next, you’ll start building your keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data. You’ll then be guided through a trained neural network, which will help you explore common deep learning network architectures (convolutional, recurrent, and generative adversarial networks) and deep reinforcement learning. Later, you’ll delve into model optimization and evaluation. You’ll do all this while working on a production-ready web application that combines TensorFlow and Keras to produce meaningful user-friendly results. By the end of this book, you’ll be equipped with the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively.

Who is this book for?

If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.

What you will learn

  • Discover how you can assemble and clean your very own datasets
  • Develop a customized machine learning classification strategy
  • Build, train and enhance your own models to solve unique problems
  • Work with production-ready frameworks such as TensorFlow and Keras
  • Understand how neural networks operate in clear and simple terms
  • Deploy your predictions to the web

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 31, 2018
Length: 334 pages
Edition : 1st
Language : English
ISBN-13 : 9781789806991
Category :
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Aug 31, 2018
Length: 334 pages
Edition : 1st
Language : English
ISBN-13 : 9781789806991
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total NZ$ 192.97
Artificial Intelligence and Machine Learning Fundamentals
NZ$48.99
Python Deep Learning Projects
NZ$71.99
Applied Deep Learning with Python
NZ$71.99
Total NZ$ 192.97 Stars icon
Banner background image

Table of Contents

8 Chapters
Jupyter Fundamentals Chevron down icon Chevron up icon
Data Cleaning and Advanced Machine Learning Chevron down icon Chevron up icon
Web Scraping and Interactive Visualizations Chevron down icon Chevron up icon
Introduction to Neural Networks and Deep Learning Chevron down icon Chevron up icon
Model Architecture Chevron down icon Chevron up icon
Model Evaluation and Optimization Chevron down icon Chevron up icon
Productization Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5
(4 Ratings)
5 star 50%
4 star 0%
3 star 25%
2 star 0%
1 star 25%
Sean K R Basler Nov 16, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I got a lot out of reading this book, especially from the first few chapters. Jupyter notebooks are the best! Lessons are full of clear step-by-step directions and good examples—highly recommended!!
Amazon Verified review Amazon
Andrew Sep 25, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Lots of projects to dive into, and not a dry as some of the other titles in the area. Really liked the Bitcoin price prediction application near the end.
Amazon Verified review Amazon
Renaldo A Williams Oct 31, 2018
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Learning a lot but typos make it hard to read without wondering how did they miss these typos.
Amazon Verified review Amazon
Bernard De Terwangne Oct 29, 2018
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Ce livre est très confus. Aucun chapitre introductif pour expliquer où on va avec le livre ou un chapitre particulier du coup on ne s'y retrouve pas et il faut rentrer dans la technique pour comprendre ce que ça fait. Aucun prérequis donc on ne sait pas avant de commencer à installer si le PC sera suffisant, si l'OS convient etc. Pas même une explication claire de comment installer les modules donc c'est parti pour chercher sur Internet et perdre du temps. Résultat : difficile de dépasser le chapitre 1.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.