Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence with Power BI

You're reading from   Artificial Intelligence with Power BI Take your data analytics skills to the next level by leveraging the AI capabilities in Power BI

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801814638
Length 348 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Mary-Jo Diepeveen Mary-Jo Diepeveen
Author Profile Icon Mary-Jo Diepeveen
Mary-Jo Diepeveen
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: AI Fundamentals
2. Chapter 1: Introducing AI in Power BI FREE CHAPTER 3. Chapter 2: Exploring Data in Power BI 4. Chapter 3: Data Preparation 5. Part 2: Out-of-the-Box AI Features
6. Chapter 4: Forecasting Time-Series Data 7. Chapter 5: Detecting Anomalies in Your Data Using Power BI 8. Chapter 6: Using Natural Language to Explore Data with the Q&A Visual 9. Chapter 7: Using Cognitive Services 10. Chapter 8: Integrating Natural Language Understanding with Power BI 11. Chapter 9: Integrating an Interactive Question and Answering App into Power BI 12. Chapter 10: Getting Insights from Images with Computer Vision 13. Part 3: Create Your Own Models
14. Chapter 11: Using Automated Machine Learning with Azure and Power BI 15. Chapter 12: Training a Model with Azure Machine Learning 16. Chapter 13: Responsible AI 17. Other Books You May Enjoy

What are our options for AI in Power BI?

If we think about what we can do with AI in Power BI, there are roughly two categories we could put the options in. First of all, we have the low-hanging fruit: the easy projects with which we can start today. And second, we have the ability to create our own models and integrate these with our Power BI reports that give us more flexibility but require a larger time investment.

Out-of-the-box options

The easy AI options in Power BI can also be referred to as out-of-the-box AI features. These models are pre-built by Microsoft, meaning that we do not need to spend time on collecting data to train the model, nor do we need the expertise to choose the right algorithm. That already saves us time on the most challenging phases in the data science process!

For most of these features, the models are already integrated with Power BI and all we have to do is consume them. For others, we have the option to add a little bit of our own data to customize it to our business scenario. That means that there is some kind of base model under the hood that is already trained by Microsoft on data collected by Microsoft (check the Privacy Agreement for the service you are working with to see whether your data is being used). We then add our own data so that Microsoft can finish training a model in a fraction of the time it would take us to create the same model ourselves from scratch.

Next to that, we can also see these models being offered in various ways. We have integrated models in Power BI that are accessible through rich visuals, also known as AI visuals. We have integrated models that can be used with a specific type of data, such as the forecasting we can add when plotting time-series data. And finally, we can use the Cognitive Services, a collection of Azure services consisting of pre-built models that we can very easily integrate with any application through the use of APIs.

Creating your own models

The advantage of using pre-built models is that you save time and money when getting started with AI. The disadvantage of using these kinds of models from any software vendor is that you have less control and less flexibility over the design of your model. If, instead, you want to create your own models, you do need access to data science expertise to make the right decisions when training a model.

Still, there are many situations in which we want to make sure we create a model that is specifically designed for our use case. In this book, we'll assume we want to work with Microsoft's cloud platform Azure to easily integrate any machine learning model with Power BI. We have three main options in Azure when training our own model:

  • Using Automated Machine Learning to train multiple models (in parallel), choose the best one, and integrate that one with our data pipeline.
  • Using the Azure Machine Learning Designer to create a model.

Both of these options require less data science expertise than the final option:

  • Using the Azure Machine Learning workspace to train and deploy model based on training scripts that are created from scratch. The latter is what data scientists are often trained to do. They are comfortable in Python or R and most commonly use open source libraries such as Scikit-learn, PyTorch, or TensorFlow to train models.

Whatever option you go for, the purpose is that you are in full control over the training data, and you can choose which algorithms to use when training a model. This means it can take more skill, time, and compute power to get to the same end result as when we use out-of-the-box models. Both pre-built models as well as self-built models therefore serve their purpose and for each use case it should be evaluated which approach works best.

You have been reading a chapter from
Artificial Intelligence with Power BI
Published in: Apr 2022
Publisher: Packt
ISBN-13: 9781801814638
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image