Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Malware Analysis

You're reading from   Data Science for Malware Analysis A comprehensive guide to using AI in detection, analysis, and compliance

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781804618646
Length 230 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Shane Molinari Shane Molinari
Author Profile Icon Shane Molinari
Shane Molinari
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Part 1– Introduction
2. Chapter 1: Malware Science Life Cycle Overview FREE CHAPTER 3. Chapter 2: An Overview of the International History of Cyber Malware Impacts 4. Part 2 – The Current State of Key Malware Science AI Technologies
5. Chapter 3: Topological Data Analysis for Malware Detection and Analysis 6. Chapter 4: Artificial Intelligence for Malware Data Analysis and Detection 7. Chapter 5: Behavior-Based Malware Data Analysis and Detection 8. Part 3 – The Future State of AI’s Use for Malware Science
9. Chapter 6: The Future State of Malware Data Analysis and Detection 10. Chapter 7: The Future State of Key International Compliance Requirements 11. Chapter 8: Epilogue – A Harmonious Overture to the Future of Malware Science and Cybersecurity
12. Other Books You May Enjoy Appendix: Index

TDA – comparing and contrasting the persistence diagrams of different software

The application of TDA and its technique of persistent homology offers a unique approach to differentiating benign software from malicious ones (malware), even amid the complexity and noise present in high-dimensional datasets.

Let’s delve into this by further expanding on the examples provided. First, consider benign software – programs designed to perform legitimate, useful tasks without causing harm to the system. When subjected to TDA, the properties of benign software tend to form certain predictable patterns. These properties, which can include binary structures, system calls, or network activity, may cluster together in the topological space. This is like how people at a social gathering might group based on shared interests or common connections. In terms of our earlier analogy, these clusters can be viewed as “mountains” on our landscape.

In the context of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image