Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Simulation Modeling with Python

You're reading from   Hands-On Simulation Modeling with Python Develop simulation models to get accurate results and enhance decision-making processes

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838985097
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started with Numerical Simulation
2. Chapter 1: Introducing Simulation Models FREE CHAPTER 3. Chapter 2: Understanding Randomness and Random Numbers 4. Chapter 3: Probability and Data Generation Processes 5. Section 2: Simulation Modeling Algorithms and Techniques
6. Chapter 4: Exploring Monte Carlo Simulations 7. Chapter 5: Simulation-Based Markov Decision Processes 8. Chapter 6: Resampling Methods 9. Chapter 7: Using Simulation to Improve and Optimize Systems 10. Section 3: Real-World Applications
11. Chapter 8: Using Simulation Models for Financial Engineering 12. Chapter 9: Simulating Physical Phenomena Using Neural Networks 13. Chapter 10: Modeling and Simulation for Project Management 14. Chapter 11: What's Next? 15. Other Books You May Enjoy

Introducing Markov chains

Markov chains are discrete dynamic systems that exhibit characteristics attributable to Markovian processes. These are finite state systems – finite Markov chains – in which the transition from one state to another occurs on a probabilistic, rather than deterministic, basis. The information available about a chain at the generic instant t is provided by the probabilities that it are in any of the states, and the temporal evolution of the chain is specified by specifying how these probabilities update by going from the instant t at instant t + 1.

Important Note

A Markov chain is a stochastic model in which the system evolves over time in such a way that the past affects the future only through the present: Markov chains have no memory of the past.

A random process characterized by a sequence of random variables X = X0, ..., Xn with values in a set j0, j1, ..., jn is given. This process is Markovian if the evolution of the process depends...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image