Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization 2. Applying Machine Learning to Structured Data FREE CHAPTER 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

Rule-based matching


Before deep learning and statistical modeling took over, NLP was all about rules. That's not to say that rule-based systems are dead! They are often easy to set up and perform very well when it comes to doing simple tasks.

Imagine you wanted to find all mentions of Google in a text. Would you really train a neural network-based named entity recognizer? If you did, you would have to run all of the text through the neural network and then look for Google in the entity texts. Alternatively, would you rather just search for text that exactly matches Google with a classic search algorithm? Well, we're in luck, as spaCy comes with an easy-to-use, rule-based matcher that allows us to do just that.

Before we start this section, we first must make sure that we reload the English language model and import the matcher. This is a very simple task that can be done by running the following code:

import spacy
from spacy.matcher import Matcher

nlp = spacy.load('en')

The matcher searches...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image