Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Mastering Python Design Patterns
Mastering Python Design Patterns

Mastering Python Design Patterns: Start learning Python programming to a better standard by mastering the art of Python design patterns

Arrow left icon
Profile Icon Kasampalis
Arrow right icon
NZ$39.99 NZ$57.99
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.6 (5 Ratings)
eBook Jan 2015 212 pages 1st Edition
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial
Arrow left icon
Profile Icon Kasampalis
Arrow right icon
NZ$39.99 NZ$57.99
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.6 (5 Ratings)
eBook Jan 2015 212 pages 1st Edition
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial
:

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Mastering Python Design Patterns

Chapter 1. The Factory Pattern

Creational design patterns deal with an object creation [j.mp/wikicrea]. The aim of a creational design pattern is to provide better alternatives for situations where a direct object creation (which in Python happens by the __init__() function [j.mp/divefunc], [Lott14, page 26]) is not convenient.

In the Factory design pattern, a client asks for an object without knowing where the object is coming from (that is, which class is used to generate it). The idea behind a factory is to simplify an object creation. It is easier to track which objects are created if this is done through a central function, in contrast to letting a client create objects using a direct class instantiation [Eckel08, page 187]. A factory reduces the complexity of maintaining an application by decoupling the code that creates an object from the code that uses it [Zlobin13, page 30].

Factories typically come in two forms: the Factory Method, which is a method (or in Pythonic terms, a function) that returns a different object per input parameter [j.mp/factorympat]; the Abstract Factory, which is a group of Factory Methods used to create a family of related products [GOF95, page 100], [j.mp/absfpat].

Factory Method

In the Factory Method, we execute a single function, passing a parameter that provides information about what we want. We are not required to know any details about how the object is implemented and where it is coming from.

A real-life example

An example of the Factory Method pattern used in reality is in plastic toy construction. The molding powder used to construct plastic toys is the same, but different figures can be produced using different plastic molds. This is like having a Factory Method in which the input is the name of the figure that we want (duck and car) and the output is the plastic figure that we requested. The toy construction case is shown in the following figure, which is provided by www.sourcemaking.com [j.mp/factorympat].

A real-life example

A software example

The Django framework uses the Factory Method pattern for creating the fields of a form. The forms module of Django supports the creation of different kinds of fields (CharField, EmailField) and customizations (max_length, required) [j.mp/djangofacm].

Use cases

If you realize that you cannot track the objects created by your application because the code that creates them is in many different places instead of a single function/method, you should consider using the Factory Method pattern [Eckel08, page 187]. The Factory Method centralizes an object creation and tracking your objects becomes much easier. Note that it is absolutely fine to create more than one Factory Method, and this is how it is typically done in practice. Each Factory Method logically groups the creation of objects that have similarities. For example, one Factory Method might be responsible for connecting you to different databases (MySQL, SQLite), another Factory Method might be responsible for creating the geometrical object that you request (circle, triangle), and so on.

The Factory Method is also useful when you want to decouple an object creation from an object usage. We are not coupled/bound to a specific class when creating an object, we just provide partial information about what we want by calling a function. This means that introducing changes to the function is easy without requiring any changes to the code that uses it [Zlobin13, page 30].

Another use case worth mentioning is related to improving the performance and memory usage of an application. A Factory Method can improve the performance and memory usage by creating new objects only if it is absolutely necessary [Zlobin13, page 28]. When we create objects using a direct class instantiation, extra memory is allocated every time a new object is created (unless the class uses caching internally, which is usually not the case). We can see that in practice in the following code (file id.py), it creates two instances of the same class A and uses the id() function to compare their memory addresses. The addresses are also printed in the output so that we can inspect them. The fact that the memory addresses are different means that two distinct objects are created as follows:

class A(object):
    pass

if __name__ == '__main__':
    a = A()
    b = A()

    print(id(a) == id(b))
    print(a, b)

Executing id.py on my computer gives the following output:

>> python3 id.py 
False
<__main__.A object at 0x7f5771de8f60> <__main__.A object at 0x7f5771df2208>

Note that the addresses that you see if you execute the file are not the same as I see because they depend on the current memory layout and allocation. But the result must be the same: the two addresses should be different. There's one exception that happens if you write and execute the code in the Python Read-Eval-Print Loop (REPL) (interactive prompt), but that's a REPL-specific optimization which is not happening normally.

Implementation

Data comes in many forms. There are two main file categories for storing/retrieving data: human-readable files and binary files. Examples of human-readable files are XML, Atom, YAML, and JSON. Examples of binary files are the .sq3 file format used by SQLite and the .mp3 file format used to listen to music.

In this example, we will focus on two popular human-readable formats: XML and JSON. Although human-readable files are generally slower to parse than binary files, they make data exchange, inspection, and modification much easier. For this reason, it is advised to prefer working with human-readable files, unless there are other restrictions that do not allow it (mainly unacceptable performance and proprietary binary formats).

In this problem, we have some input data stored in an XML and a JSON file, and we want to parse them and retrieve some information. At the same time, we want to centralize the client's connection to those (and all future) external services. We will use the Factory Method to solve this problem. The example focuses only on XML and JSON, but adding support for more services should be straightforward.

First, let's take a look at the data files. The XML file, person.xml, is based on the Wikipedia example [j.mp/wikijson] and contains information about individuals (firstName, lastName, gender, and so on) as follows:

<persons>
  <person>
    <firstName>John</firstName>
    <lastName>Smith</lastName>
    <age>25</age>
    <address>
      <streetAddress>21 2nd Street</streetAddress>
      <city>New York</city>
      <state>NY</state>
      <postalCode>10021</postalCode>
    </address>
    <phoneNumbers>
      <phoneNumber type="home">212 555-1234</phoneNumber>
      <phoneNumber type="fax">646 555-4567</phoneNumber>
    </phoneNumbers>
    <gender>
      <type>male</type>
    </gender>
  </person>
  <person>
    <firstName>Jimy</firstName>
    <lastName>Liar</lastName>
    <age>19</age>
    <address>
      <streetAddress>18 2nd Street</streetAddress>
      <city>New York</city>
      <state>NY</state>
      <postalCode>10021</postalCode>
    </address>
    <phoneNumbers>
      <phoneNumber type="home">212 555-1234</phoneNumber>
    </phoneNumbers>
    <gender>
      <type>male</type>
    </gender>
  </person>
  <person>
    <firstName>Patty</firstName>
    <lastName>Liar</lastName>
    <age>20</age>
    <address>
      <streetAddress>18 2nd Street</streetAddress>
      <city>New York</city>
      <state>NY</state>
      <postalCode>10021</postalCode>
    </address>
    <phoneNumbers>
      <phoneNumber type="home">212 555-1234</phoneNumber>
      <phoneNumber type="mobile">001 452-8819</phoneNumber>
    </phoneNumbers>
    <gender>
      <type>female</type>
    </gender>
  </person>
</persons>

The JSON file, donut.json, comes from the GitHub account of Adobe [j.mp/adobejson] and contains donut information (type, price/unit that is, ppu, topping, and so on) as follows:

[
  {
    "id": "0001",
    "type": "donut",
    "name": "Cake",
    "ppu": 0.55,
    "batters": {
      "batter": [
        { "id": "1001", "type": "Regular" },
        { "id": "1002", "type": "Chocolate" },
        { "id": "1003", "type": "Blueberry" },
        { "id": "1004", "type": "Devil's Food" }
      ]
    },
    "topping": [
      { "id": "5001", "type": "None" },
      { "id": "5002", "type": "Glazed" },
      { "id": "5005", "type": "Sugar" },
      { "id": "5007", "type": "Powdered Sugar" },
      { "id": "5006", "type": "Chocolate with Sprinkles" },
      { "id": "5003", "type": "Chocolate" },
      { "id": "5004", "type": "Maple" }
    ]
  },
  {
    "id": "0002",
    "type": "donut",
    "name": "Raised",
    "ppu": 0.55,
    "batters": {
      "batter": [
        { "id": "1001", "type": "Regular" }
      ]
    },
    "topping": [
      { "id": "5001", "type": "None" },
      { "id": "5002", "type": "Glazed" },
      { "id": "5005", "type": "Sugar" },
      { "id": "5003", "type": "Chocolate" },
      { "id": "5004", "type": "Maple" }
    ]
  },
  {
    "id": "0003",
    "type": "donut",
    "name": "Old Fashioned",
    "ppu": 0.55,
    "batters": {
      "batter": [
        { "id": "1001", "type": "Regular" },
        { "id": "1002", "type": "Chocolate" }
      ]
    },
    "topping": [
      { "id": "5001", "type": "None" },
      { "id": "5002", "type": "Glazed" },
      { "id": "5003", "type": "Chocolate" },
      { "id": "5004", "type": "Maple" }
    ]
  }
]

We will use two libraries that are part of the Python distribution for working with XML and JSON: xml.etree.ElementTree and json as follows:

import xml.etree.ElementTree as etree
import json

The JSONConnector class parses the JSON file and has a parsed_data() method that returns all data as a dictionary (dict). The property decorator is used to make parsed_data() appear as a normal variable instead of a method as follows:

class JSONConnector:

    def __init__(self, filepath):
        self.data = dict()
        with open(filepath, mode='r', encoding='utf-8') as f:
            self.data = json.load(f)

    @property
    def parsed_data(self):
        return self.data

The XMLConnector class parses the XML file and has a parsed_data() method that returns all data as a list of xml.etree.Element as follows:

class XMLConnector:

    def __init__(self, filepath):
        self.tree = etree.parse(filepath)

    @property
    def parsed_data(self):
        return self.tree

The connection_factory() function is a Factory Method. It returns an instance of JSONConnector or XMLConnector depending on the extension of the input file path as follows:

def connection_factory(filepath):
    if filepath.endswith('json'):
        connector = JSONConnector
    elif filepath.endswith('xml'):
        connector = XMLConnector
    else:
        raise ValueError('Cannot connect to {}'.format(filepath))
    return connector(filepath)

The connect_to() function is a wrapper of connection_factory(). It adds exception handling as follows:

def connect_to(filepath):
    factory = None
    try:
        factory = connection_factory(filepath)
    except ValueError as ve:
        print(ve)
    return factory

The main() function demonstrates how the Factory Method design pattern can be used. The first part makes sure that exception handling is effective as follows:

def main():
    sqlite_factory = connect_to('data/person.sq3')

The next part shows how to work with the XML files using the Factory Method. XPath is used to find all person elements that have the last name Liar. For each matched person, the basic name and phone number information are shown as follows:

    xml_factory = connect_to('data/person.xml')
    xml_data = xml_factory.parsed_data()
    liars = xml_data.findall(".//{person}[{lastName}='{}']".format('Liar'))
    print('found: {} persons'.format(len(liars)))
    for liar in liars:
        print('first name: {}'.format(liar.find('firstName').text))
        print('last name: {}'.format(liar.find('lastName').text))
        [print('phone number ({}):'.format(p.attrib['type']), p.text) for p in liar.find('phoneNumbers')]

The final part shows how to work with the JSON files using the Factory Method. Here, there's no pattern matching, and therefore the name, price, and topping of all donuts are shown as follows:

    json_factory = connect_to('data/donut.json')
    json_data = json_factory.parsed_data
    print('found: {} donuts'.format(len(json_data)))
    for donut in json_data:
        print('name: {}'.format(donut['name']))
        print('price: ${}'.format(donut['ppu']))
        [print('topping: {} {}'.format(t['id'], t['type'])) for t in donut['topping']]

For completeness, here is the complete code of the Factory Method implementation (factory_method.py) as follows:

import xml.etree.ElementTree as etree
import json

class JSONConnector:
    def __init__(self, filepath):
        self.data = dict()
        with open(filepath, mode='r', encoding='utf-8') as f:
            self.data = json.load(f)

    @property
    def parsed_data(self):
        return self.data

class XMLConnector:
    def __init__(self, filepath):
        self.tree = etree.parse(filepath)

    @property
    def parsed_data(self):
        return self.tree

def connection_factory(filepath):
    if filepath.endswith('json'):
        connector = JSONConnector
    elif filepath.endswith('xml'):
        connector = XMLConnector
    else:
        raise ValueError('Cannot connect to {}'.format(filepath))
    return connector(filepath)

def connect_to(filepath):
    factory = None
    try:
       factory = connection_factory(filepath)
    except ValueError as ve:
        print(ve)
    return factory

def main():
    sqlite_factory = connect_to('data/person.sq3')
    print()

    xml_factory = connect_to('data/person.xml')
    xml_data = xml_factory.parsed_data
    liars = xml_data.findall(".//{}[{}='{}']".format('person', 'lastName', 'Liar'))
    print('found: {} persons'.format(len(liars)))
    for liar in liars:
        print('first name: {}'.format(liar.find('firstName').text))
        print('last name: {}'.format(liar.find('lastName').text))
        [print('phone number ({}):'.format(p.attrib['type']), p.text) for p in liar.find('phoneNumbers')]
    print()

    json_factory = connect_to('data/donut.json')
    json_data = json_factory.parsed_data
    print('found: {} donuts'.format(len(json_data)))
    for donut in json_data:
    print('name: {}'.format(donut['name']))
    print('price: ${}'.format(donut['ppu']))
    [print('topping: {} {}'.format(t['id'], t['type'])) for t in donut['topping']]

if __name__ == '__main__':
    main()

Here is the output of this program as follows:

>>> python3 factory_method.py
Cannot connect to data/person.sq3

found: 2 persons
first name: Jimy
last name: Liar
phone number (home): 212 555-1234
first name: Patty
last name: Liar
phone number (home): 212 555-1234
phone number (mobile): 001 452-8819

found: 3 donuts
name: Cake
price: $0.55
topping: 5001 None
topping: 5002 Glazed
topping: 5005 Sugar
topping: 5007 Powdered Sugar
topping: 5006 Chocolate with Sprinkles
topping: 5003 Chocolate
topping: 5004 Maple
name: Raised
price: $0.55
topping: 5001 None
topping: 5002 Glazed
topping: 5005 Sugar
topping: 5003 Chocolate
topping: 5004 Maple
name: Old Fashioned
price: $0.55
topping: 5001 None
topping: 5002 Glazed
topping: 5003 Chocolate
topping: 5004 Maple

Notice that although JSONConnector and XMLConnector have the same interfaces, what is returned by parsed_data() is not handled in a uniform way. Different python code must be used to work with each connector. Although it would be nice to be able to use the same code for all connectors, this is at most times not realistic unless we use some kind of common mapping for the data which is very often provided by external data providers. Assuming that you can use exactly the same code for handling the XML and JSON files, what changes are required to support a third format, for example, SQLite? Find an SQLite file or create your own and try it.

As it is now, the code does not forbid a direct instantiation of a connector. Is it possible to do this? Try doing it.

Tip

Hint: Functions in Python can have nested classes.

Abstract Factory

The Abstract Factory design pattern is a generalization of Factory Method. Basically, an Abstract Factory is a (logical) group of Factory Methods, where each Factory Method is responsible for generating a different kind of object [Eckel08, page 193].

A real-life example

Abstract Factory is used in car manufacturing. The same machinery is used for stamping the parts (doors, panels, hoods, fenders, and mirrors) of different car models. The model that is assembled by the machinery is configurable and easy to change at any time. We can see an example of the car manufacturing Abstract Factory in the following figure, which is provided by www.sourcemaking.com [j.mp/absfpat].

A real-life example

A software example

The django_factory package is an Abstract Factory implementation for creating Django models in tests. It is used for creating instances of models that support test-specific attributes. This is important because the tests become readable and avoid sharing unnecessary code [j.mp/djangoabs].

Use cases

Since the Abstract Factory pattern is a generalization of the Factory Method pattern, it offers the same benefits: it makes tracking an object creation easier, it decouples an object creation from an object usage, and it gives us the potential to improve the memory usage and performance of our application.

But a question is raised: how do we know when to use the Factory Method versus using an Abstract Factory? The answer is that we usually start with the Factory Method which is simpler. If we find out that our application requires many Factory Methods which it makes sense to combine for creating a family of objects, we end up with an Abstract Factory.

A benefit of the Abstract Factory that is usually not very visible from a user's point of view when using the Factory Method is that it gives us the ability to modify the behavior of our application dynamically (in runtime) by changing the active Factory Method. The classic example is giving the ability to change the look and feel of an application (for example, Apple-like, Windows-like, and so on) for the user while the application is in use, without the need to terminate it and start it again [GOF95, page 99].

Implementation

To demonstrate the Abstract Factory pattern, I will reuse one of my favorite examples, included in Python 3 Patterns & Idioms, Bruce Eckel, [Eckel08, page 193]. Imagine that we are creating a game or we want to include a mini-game as part of our application to entertain our users. We want to include at least two games, one for children and one for adults. We will decide which game to create and launch in runtime, based on user input. An Abstract Factory takes care of the game creation part.

Let's start with the kid's game. It is called FrogWorld. The main hero is a frog who enjoys eating bugs. Every hero needs a good name, and in our case the name is given by the user in runtime. The interact_with() method is used to describe the interaction of the frog with an obstacle (for example, bug, puzzle, and other frog) as follows:

class Frog:
    def __init__(self, name):
        self.name = name

    def __str__(self):
        return self.name

    def interact_with(self, obstacle):
        print('{} the Frog encounters {} and {}!'.format(self, obstacle, obstacle.action()))

There can be many different kinds of obstacles but for our example an obstacle can only be a Bug. When the frog encounters a bug, only one action is supported: it eats it!

class Bug: 
    def __str__(self):
        return 'a bug'

    def action(self):
        return 'eats it'

The FrogWorld class is an Abstract Factory. Its main responsibilities are creating the main character and the obstacle(s) of the game. Keeping the creation methods separate and their names generic (for example, make_character(), make_obstacle()) allows us to dynamically change the active factory (and therefore the active game) without any code changes. In a statically typed language, the Abstract Factory would be an abstract class/interface with empty methods, but in Python this is not required because the types are checked in runtime [Eckel08, page 195], [j.mp/ginstromdp] as follows:

class FrogWorld:
    def __init__(self, name):
        print(self)
        self.player_name = name
    
    def __str__(self):
        return '\n\n\t------ Frog World -------'

    def make_character(self):
        return Frog(self.player_name)

    def make_obstacle(self):
        return Bug()

The WizardWorld game is similar. The only differences are that the wizard battles against monsters like orks instead of eating bugs!

class Wizard:
    def __init__(self, name):
        self.name = name

    def __str__(self):
        return self.name

    def interact_with(self, obstacle):
        print('{} the Wizard battles against {} and {}!'.format(self, obstacle, obstacle.action()))

class Ork:
    def __str__(self):
        return 'an evil ork'

    def action(self):
        return 'kills it'

class WizardWorld:
    def __init__(self, name):
        print(self)
        self.player_name = name

    def __str__(self):
        return '\n\n\t------ Wizard World -------'

    def make_character(self):
        return Wizard(self.player_name)

    def make_obstacle(self):
        return Ork()

The GameEnvironment is the main entry point of our game. It accepts factory as an input, and uses it to create the world of the game. The play() method initiates the interaction between the created hero and the obstacle as follows:

class GameEnvironment:
    def __init__(self, factory):
        self.hero = factory.make_character()
        self.obstacle = factory.make_obstacle()

    def play(self):
        self.hero.interact_with(self.obstacle)

The validate_age() function prompts the user to give a valid age. If the age is not valid, it returns a tuple with the first element set to False. If the age is fine, the first element of the tuple is set to True and that's the case where we actually care about the second element of the tuple, which is the age given by the user as follows:

def validate_age(name):
    try:
        age = input('Welcome {}. How old are you? '.format(name))
        age = int(age)
    except ValueError as err:
        print("Age {} is invalid, please try again...".format(age))
        return (False, age)
    return (True, age)

Last but not least comes the main() function. It asks for the user's name and age, and decides which game should be played by the age of the user as follows:

def main():
    name = input("Hello. What's your name? ")
    valid_input = False
    while not valid_input:
        valid_input, age = validate_age(name)
    game = FrogWorld if age < 18 else WizardWorld
    environment = GameEnvironment(game(name))
    environment.play()

And the complete code of the Abstract Factory implementation (abstract_factory.py) is given as follows:

class Frog:
    def __init__(self, name):
        self.name = name

    def __str__(self):
        return self.name

    def interact_with(self, obstacle):
        print('{} the Frog encounters {} and {}!'.format(self, obstacle, obstacle.action()))

class Bug:
    def __str__(self):
        return 'a bug'

    def action(self):
        return 'eats it'

class FrogWorld:
    def __init__(self, name):
        print(self)
        self.player_name = name
    
    def __str__(self):
        return '\n\n\t------ Frog World -------'

    def make_character(self):
        return Frog(self.player_name)

    def make_obstacle(self):
        return Bug()

class Wizard:
    def __init__(self, name):
        self.name = name

    def __str__(self):
        return self.name
 
    def interact_with(self, obstacle):
        print('{} the Wizard battles against {} and {}!'.format(self, obstacle, obstacle.action()))

class Ork:
    def __str__(self):
        return 'an evil ork'

    def action(self):
        return 'kills it'

class WizardWorld:
    def __init__(self, name):
        print(self)
        self.player_name = name

    def __str__(self):
        return '\n\n\t------ Wizard World -------'

    def make_character(self):
        return Wizard(self.player_name)

    def make_obstacle(self):
        return Ork()

class GameEnvironment:
    def __init__(self, factory):
        self.hero = factory.make_character()
        self.obstacle = factory.make_obstacle()

    def play(self):
        self.hero.interact_with(self.obstacle)

def validate_age(name):
    try:
        age = input('Welcome {}. How old are you? '.format(name))
        age = int(age)
    except ValueError as err:
        print("Age {} is invalid, please try again...".format(age))
        return (False, age)
    return (True, age)

def main():
    name = input("Hello. What's your name? ")
    valid_input = False
    while not valid_input:
        valid_input, age = validate_age(name)
    game = FrogWorld if age < 18 else WizardWorld
    environment = GameEnvironment(game(name))
    environment.play()

if __name__ == '__main__':
    main()

A sample output of this program is as follows:

>>> python3 abstract_factory.py
Hello. What's your name? Nick
Welcome Nick. How old are you? 17
        ------ Frog World -------
Nick the Frog encounters a bug and eats it!

Try extending the game to make it more complete. You can go as far as you want: many obstacles, many enemies, and whatever else you like.

Summary

In this chapter, we have seen how to use the Factory Method and the Abstract Factory design patterns. Both patterns are used when we want to (a) track an object creation, (b) decouple an object creation from an object usage, or even (c) improve the performance and resource usage of an application. Case (c) was not demonstrated in the chapter. You might consider it as a good exercise.

The Factory Method design pattern is implemented as a single function that doesn't belong to any class, and is responsible for the creation of a single kind of object (a shape, a connection point, and so on). We saw how the Factory Method relates to toy construction, mentioned how it is used by Django for creating different form fields, and discussed other possible use cases for it. As an example, we implemented a Factory Method that provides access to the XML and JSON files.

The Abstract Factory design pattern is implemented as a number of Factory Methods that belong to a single class and are used to create a family of related objects (the parts of a car, the environment of a game, and so forth). We mentioned how the Abstract Factory is related with car manufacturing, how the django_factory Django package makes use of it to create clean tests, and covered the use cases of it. The implementation of the Abstract Factory is a mini-game that shows how we can use many related factories in a single class.

In the next chapter, we will talk about the Builder pattern, which is another creational pattern that can be used for fine-controlling the creation of complex objects.

Left arrow icon Right arrow icon

Description

This book is for Python programmers with an intermediate background and an interest in design patterns implemented in idiomatic Python. Programmers of other languages who are interested in Python can also benefit from this book, but it would be better if they first read some introductory materials that explain how things are done in Python.

Who is this book for?

This book is for Python programmers with an intermediate background and an interest in design patterns implemented in idiomatic Python. Programmers of other languages who are interested in Python can also benefit from this book, but it would be better if they first read some introductory materials that explain how things are done in Python.

What you will learn

  • Explore Factory Method and Abstract Factory for object creation
  • Clone objects using the Prototype pattern
  • Make incompatible interfaces compatible using the Adapter pattern
  • Secure an interface using the Proxy pattern
  • Choose an algorithm dynamically using the Strategy pattern
  • Extend an object without subclassing using the Decorator pattern
  • Keep the logic decoupled from the UI using the MVC pattern

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jan 28, 2015
Length: 212 pages
Edition : 1st
Language : English
ISBN-13 : 9781783989331
Category :
Languages :
:

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jan 28, 2015
Length: 212 pages
Edition : 1st
Language : English
ISBN-13 : 9781783989331
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total NZ$ 233.97
Mastering Python Design Patterns
NZ$71.99
Functional Python Programming
NZ$80.99
Python 3 Object-Oriented Programming - Second Edition
NZ$80.99
Total NZ$ 233.97 Stars icon
Banner background image

Table of Contents

17 Chapters
1. The Factory Pattern Chevron down icon Chevron up icon
2. The Builder Pattern Chevron down icon Chevron up icon
3. The Prototype Pattern Chevron down icon Chevron up icon
4. The Adapter Pattern Chevron down icon Chevron up icon
5. The Decorator Pattern Chevron down icon Chevron up icon
6. The Facade Pattern Chevron down icon Chevron up icon
7. The Flyweight Pattern Chevron down icon Chevron up icon
8. The Model-View-Controller Pattern Chevron down icon Chevron up icon
9. The Proxy Pattern Chevron down icon Chevron up icon
10. The Chain of Responsibility Pattern Chevron down icon Chevron up icon
11. The Command Pattern Chevron down icon Chevron up icon
12. The Interpreter Pattern Chevron down icon Chevron up icon
13. The Observer Pattern Chevron down icon Chevron up icon
14. The State Pattern Chevron down icon Chevron up icon
15. The Strategy Pattern Chevron down icon Chevron up icon
16. The Template Pattern Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.6
(5 Ratings)
5 star 20%
4 star 60%
3 star 0%
2 star 0%
1 star 20%
Richard Hazey Mar 04, 2015
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is well organized and concisely written. Each chapter stands on its own and can be read independently, which fits my style and allows for reading it as time permits. The chapters each contain some theory or explanation as well as copious amounts of code and real world examples. The use cases were also helpful in understanding situations where the design patterns could be implemented.I purchased the eBook version which had links embedded in the text for additional detail and in-depth explanations on related topics. I like to explore as I read and learn, so this was a welcome feature.The only con for me was that it's written for Python 3, however, the concepts apply to Python 2 and other languages. Eventually I will move to Python 3 and this was a gave me a chance to try Python 3.I recommend if you want to learn about design patterns and you're a Python user.
Amazon Verified review Amazon
Matteo Mar 01, 2015
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
If you need to find new ideas on how to optimize or make your code more easy to interpret this book will give you several examples of code structures to make it more efficient or more simple to interpret. The book writing style is a bit dry and it's not for beginners(you need to know what python is about and how to code with it or you will get lost) but the core content is sound so if you know your stuff and you want to learn new coding styles this book is for you.
Amazon Verified review Amazon
GEORGE G Mar 22, 2015
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
I really enjoy reading this book. It was very useful to learn how to properly apply certain design patterns to real-life examples.
Amazon Verified review Amazon
Arto Mujunen Sep 14, 2019
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Straight forward explanations for each design patterns without academic jargon
Amazon Verified review Amazon
vytas315 Jul 30, 2016
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
There is simple and then there is simplistic. The examples in this book may be structured in the style of the design patterns discussed, but they lack the complexity to truly communicate the purpose of these patterns. If you need general ideas about patterns, this book is fine. However, I'm finding myself googling every section to learn more practical information about when and why to use these patterns. This book is very light on content and does nothing to convey deeper understanding of when certain principles should be used. I encourage you to google each chapter title rather than buying this book.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.