Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with TensorFlow

You're reading from   Natural Language Processing with TensorFlow Teach language to machines using Python's deep learning library

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788478311
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Thushan Ganegedara Thushan Ganegedara
Author Profile Icon Thushan Ganegedara
Thushan Ganegedara
Motaz Saad Motaz Saad
Author Profile Icon Motaz Saad
Motaz Saad
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Natural Language Processing FREE CHAPTER 2. Understanding TensorFlow 3. Word2vec – Learning Word Embeddings 4. Advanced Word2vec 5. Sentence Classification with Convolutional Neural Networks 6. Recurrent Neural Networks 7. Long Short-Term Memory Networks 8. Applications of LSTM – Generating Text 9. Applications of LSTM – Image Caption Generation 10. Sequence-to-Sequence Learning – Neural Machine Translation 11. Current Trends and the Future of Natural Language Processing A. Mathematical Foundations and Advanced TensorFlow Index

The Continuous Bag-of-Words algorithm

The CBOW model has a working similar to the skip-gram algorithm with one significant change in the problem formulation. In the skip-gram model, we predicted the context words from the target word. However, in the CBOW model, we will predict the target from contextual words. Let's compare what data looks like for skip-gram and CBOW by taking the previous example sentence:

The dog barked at the mailman.

For skip-gram, data tuples—(input word, output word)—might look like this:

(dog, the), (dog, barked), (barked, dog), and so on.

For CBOW, data tuples would look like the following:

([the, barked], dog), ([dog, at], barked), and so on.

Consequently, the input of the CBOW has a dimensionality of 2 × m × D, where m is the context window size and D is the dimensionality of the embeddings. The conceptual model of CBOW is shown in Figure 3.13:

The Continuous Bag-of-Words algorithm

Figure 3.13: The CBOW model

We will not go into great details about the intricacies of CBOW...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image