Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Practical Data Science Cookbook, Second Edition
Practical Data Science Cookbook, Second Edition

Practical Data Science Cookbook, Second Edition: Data pre-processing, analysis and visualization using R and Python , Second Edition

Arrow left icon
Profile Icon Purushottam Joshi Profile Icon Tattar Profile Icon Anthony Ojeda Profile Icon ABHIJIT DASGUPTA Profile Icon Sean P Murphy +1 more Show less
Arrow right icon
Free Trial
Paperback Jun 2017 434 pages 2nd Edition
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial
Arrow left icon
Profile Icon Purushottam Joshi Profile Icon Tattar Profile Icon Anthony Ojeda Profile Icon ABHIJIT DASGUPTA Profile Icon Sean P Murphy +1 more Show less
Arrow right icon
Free Trial
Paperback Jun 2017 434 pages 2nd Edition
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial
eBook
NZ$39.99 NZ$57.99
Paperback
NZ$71.99
Subscription
Free Trial

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Practical Data Science Cookbook, Second Edition

Driving Visual Analysis with Automobile Data with R

In this chapter, we will cover the following:

  • Acquiring automobile fuel efficiency data
  • Preparing R for your first project
  • Importing automobile fuel efficiency data into R
  • Exploring and describing fuel efficiency data
  • Analyzing automobile fuel efficiency over time
  • Investigating the makes and models of automobiles

Introduction

The first project we will introduce in this book is an analysis of automobile fuel economy data. The primary tool that we will use to analyze this dataset is the R statistical programming language. R is often referred to as the lingua franca of data science since it is currently the most popular language for statistics and data analysis. As you'll see from the examples in this book, R is an excellent tool for data manipulation, analysis, modeling, visualization, and creating useful scripts to get analytical tasks done.

The recipes in this chapter will roughly follow these five steps in the data science pipeline:

  • Acquisition
  • Exploration and understanding
  • Munging, wrangling, and manipulation
  • Analysis and modeling
  • Communication and operationalization

Process-wise, the backbone of data science is the data science pipeline, and in order to get good at data science...

Acquiring automobile fuel efficiency data

Every data science project starts with data and this chapter begins in the same manner. For this recipe, we will dive into a dataset that contains fuel efficiency performance metrics, measured in Miles Per Gallon (MPG) over time, for most makes and models of automobiles available in the US since 1984. This data is courtesy of the U.S. Department of Energy and the US Environmental Protection Agency. In addition to fuel efficiency data, the dataset also contains several features and attributes of the automobiles listed, thereby providing the opportunity to summarize and group data to determine which groups tend to have better fuel efficiency historically and how this has changed over the years. The latest version of the dataset is available at http://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip, and information about the variables in...

Preparing R for your first project

For the following recipes, you will need the R statistical programming language installed on your computer (either the base R or RStudio, but the authors strongly recommend using the excellent and free RStudio) and the automobile fuel efficiency dataset. This quick recipe will help you ensure that you have everything that you will need to complete this analysis project.

Getting ready

You will need an internet connection to complete this recipe, and we assume that you have installed RStudio for your particular platform, based on the instructions in the previous chapter.

How to do it...

...

Importing automobile fuel efficiency data into R

Once you have downloaded and installed everything in the previous recipe, Preparing R for your first project, you can import the dataset into R to start doing some preliminary analysis and get a sense of what the data looks like.

Getting ready

Much of the analysis in this chapter is cumulative, and the efforts of the previous recipes will be used for subsequent recipes. Thus, if you completed the previous recipe, you should have everything you need to continue.

How to do it...

The following steps will walk you through the...

Exploring and describing fuel efficiency data

Now that we have imported the automobile fuel efficiency data into R and learned a little about the nuances of importing, the next step is to do some preliminary analysis of the dataset. The purpose of this analysis is to explore what the data looks like and get your feet wet with some of R's most basic commands.

Getting ready

If you have completed the previous recipe, you should have everything that you need to continue.

How to do it...

The following steps will lead you through the initial exploration of our dataset,...

Analyzing automobile fuel efficiency over time

We have now successfully imported the data and looked at some important high-level statistics that provided us with a basic understanding of what values are in the dataset and how frequently some features appear. With this recipe, we continue the exploration by looking at some of the fuel efficiency metrics over time and in relation to other data points.

Getting ready

If you completed the previous recipe, you should have everything you need to continue.

How to do it...

The following steps will use both plyr and the graphics...

Investigating the makes and models of automobiles

With the first set of questions asked and answered about this dataset, let's move on to additional analyses.

Getting ready

If you completed the previous recipe, you should have everything you need to continue.

How to do it...

This recipe will investigate the makes and models of automobiles and how they have changed over time:

  1. Let's look at how the makes and models of cars inform fuel efficiency over time. First, let's look at the frequency of the makes and models of cars available in the US over this time...
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Tackle every step in the data science pipeline and use it to acquire, clean, analyze, and visualize your data
  • Get beyond the theory and implement real-world projects in data science using R and Python
  • Easy-to-follow recipes will help you understand and implement the numerical computing concepts

Description

As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don’t. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python.

Who is this book for?

If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of real-world data science projects and the programming examples in R and Python.

What you will learn

  • Learn and understand the installation procedure and environment required for R and Python on various platforms
  • Prepare data for analysis by implement various data science concepts such as acquisition, cleaning and munging through R and Python
  • Build a predictive model and an exploratory model
  • Analyze the results of your model and create reports on the acquired data
  • Build various tree-based methods and Build random forest

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 29, 2017
Length: 434 pages
Edition : 2nd
Language : English
ISBN-13 : 9781787129627
Category :
Languages :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jun 29, 2017
Length: 434 pages
Edition : 2nd
Language : English
ISBN-13 : 9781787129627
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total NZ$ 249.97
Practical Predictive Analytics
NZ$80.99
Practical Data Science Cookbook, Second Edition
NZ$71.99
Practical Machine Learning Cookbook
NZ$96.99
Total NZ$ 249.97 Stars icon
Banner background image

Table of Contents

11 Chapters
Preparing Your Data Science Environment Chevron down icon Chevron up icon
Driving Visual Analysis with Automobile Data with R Chevron down icon Chevron up icon
Creating Application-Oriented Analyses Using Tax Data and Python Chevron down icon Chevron up icon
Modeling Stock Market Data Chevron down icon Chevron up icon
Visually Exploring Employment Data Chevron down icon Chevron up icon
Driving Visual Analyses with Automobile Data Chevron down icon Chevron up icon
Working with Social Graphs Chevron down icon Chevron up icon
Recommending Movies at Scale (Python) Chevron down icon Chevron up icon
Harvesting and Geolocating Twitter Data (Python) Chevron down icon Chevron up icon
Forecasting New Zealand Overseas Visitors Chevron down icon Chevron up icon
German Credit Data Analysis Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.