Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Learn how to apply powerful data analysis techniques with popular open source Python modules

Arrow left icon
Product type Paperback
Published in Oct 2014
Publisher
ISBN-13 9781783553358
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Getting Started with Python Libraries 2. NumPy Arrays FREE CHAPTER 3. Statistics and Linear Algebra 4. pandas Primer 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources
Index

Genetic algorithms

This is the most controversial section in the book so far. Genetic algorithms are based on the biological theory of evolution (see http://en.wikipedia.org/wiki/Evolutionary_algorithm). This type of algorithm is useful for searching and optimization. For instance, we can use it to find the optimal parameters for a regression or classification problem.

Humans and other life forms on Earth carry genetic information in chromosomes. Chromosomes are frequently modeled as strings. A similar representation is used in genetic algorithms. The first step is to initialize the population with random individuals and related representation of genetic information. We can also initialize with already-known candidate solutions for the problem. After that, we go through many iterations called generations. During each generation, individuals are selected for mating based on a predefined fitness function. The fitness function evaluates how close an individual is to the desired solution.

Two...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image