Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789341652
Length 356 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Thinking Probabilistically FREE CHAPTER 2. Programming Probabilistically 3. Modeling with Linear Regression 4. Generalizing Linear Models 5. Model Comparison 6. Mixture Models 7. Gaussian Processes 8. Inference Engines 9. Where To Go Next?
10. Other Books You May Enjoy

Exercises

  1. Rerun the first model using the petal length and then petal width variables. What are the main differences in the results? How wide or narrow is the 95% HPD interval in each case?
  2. Repeat exercise 1, this time using a Student's t-distribution as a weakly informative prior. Try different values of .
  3. Go back to the first example, the logistic regression for classifying setosa or versicolor given sepal length. Try to solve the same problem using a simple linear regression model, as we saw in Chapter 3, Modeling with Linear Regression. How useful is linear regression compared to logistic regression? Can the result be interpreted as a probability? Tip, check whether the values of are restricted to the [0, 1] interval.
  1. In the example from the Interpreting the coefficients of a logistic regression section, we changed sepal_length by 1 unit. Using Figure 4.6, corroborate...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image