Evaluation of RAG using Azure Prompt Flow
Up to this point, we have discussed the development of resilient RAG applications. However, the question arises: How can we determine whether these applications are functioning as anticipated and if the context they retrieve is pertinent? While manual validation—comparing the responses generated by LLMs against ground truth—is possible, this method proves to be labor-intensive, costly, and challenging to execute on a large scale. Consequently, it’s essential to explore methodologies that facilitate automated evaluation on a vast scale. Recent research has delved into the concept of utilizing “LLM as a judge” to assess output, a strategy that Azure Prompt Flow incorporates within its offerings.
Azure Prompt Flow has built-in and structured metaprompt templates with comprehensive guardrails to evaluate your output against ground truth. The following mentions four metrics that can help you evaluate your RAG...