Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java 9 High Performance

You're reading from   Java 9 High Performance Practical techniques and best practices for optimizing Java applications through concurrency, reactive programming, and more

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781787120785
Length 398 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Nick Samoylov Nick Samoylov
Author Profile Icon Nick Samoylov
Nick Samoylov
Mayur Ramgir Mayur Ramgir
Author Profile Icon Mayur Ramgir
Mayur Ramgir
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

1. Learning Java 9 Underlying Performance Improvements FREE CHAPTER 2. Identifying Performance Bottlenecks 3. Learning How to Troubleshoot Code 4. Learning How to Use Profiling Tools 5. Understanding Garbage Collection and Making Use of It 6. Optimizing Code with Microbenchmarking 7. Speeding Up JSON Generation 8. Tools for Higher Productivity and Faster Application 9. Multithreading and Reactive Programming 10. Microservices 11. Making Use of New APIs to Improve Your Code

Concurrency performance

Multithreading is a very popular concept. It allows programs to run multiple tasks at the same time. These multithreaded programs may have more than one unit which can run concurrently. Every unit can handle a different task keeping the use of available resources optimal. This can be managed by multiple threads that can run in parallel.

Java 9 improved contended locking. You may be wondering what is contended locking. Let's explore. Each object has one monitor that can be owned by one thread at a time. Monitors are the basic building blocks of concurrency. In order for a thread to execute a block of code marked as synchronized on an object or a synchronized method declared by an object, it must own this object's monitor. Since there are multiple threads trying to get access to the mentioned monitor, JVM needs to orchestrate the process and only allow one thread at a time. It means the rest of threads go in a wait state. This monitor is then called contended. Because of this provision, the program wastes time in the waiting state.

Also, Java Virtual Machine (JVM) does some work orchestrating the lock contention. Additionally, it has to manage threads, so once the existing thread finishes its execution, it can allow a new thread to go in. This certainly adds overhead and affects performance adversely. Java 9 has taken a few steps to improve in this area. The provision refines the JVM's orchestration, which will ultimately result in performance improvement in highly contested code.

The following benchmarks and tests can be used to check the performance improvements of contented Java object monitors:

  • CallTimerGrid (This is more of a stress test than a benchmark)
  • Dacapo-bach (earlier dacapo2009)
  • _ avrora
  • _ batik
  • _ fop
  • _ h2
  • _ luindex
  • _ lusearch
  • _ pmd
  • _ sunflow
  • _ tomcat
  • _ tradebeans
  • _ tradesoap
  • _ xalan
  • DerbyContentionModelCounted
  • HighContentionSimulator
  • LockLoops-JSR166-Doug-Sept2009 (earlier LockLoops)
  • PointBase
  • SPECjbb2013-critical (earlier specjbb2005)
  • SPECjbb2013-max
  • specjvm2008
  • volano29 (earlier volano2509)
You have been reading a chapter from
Java 9 High Performance
Published in: Nov 2017
Publisher: Packt
ISBN-13: 9781787120785
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image