Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Expert techniques for predictive modeling

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781788295864
Length 458 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Machine Learning FREE CHAPTER 2. Managing and Understanding Data 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Other Books You May Enjoy
Leave a review - let other readers know what you think
Index

Understanding regression trees and model trees


If you recall from Chapter 5, Divide and Conquer – Classification Using Decision Trees and Rules, a decision tree builds a model, much like a flowchart, in which decision nodes, leaf nodes, and branches define a series of decisions that are used to classify examples. Such trees can also be used for numeric prediction by making only small adjustments to the tree growing algorithm. In this section, we will consider the ways in which trees for numeric prediction differ from trees used for classification.

Trees for numeric prediction fall into two categories. The first, known as regression trees, were introduced in the 1980s as part of the seminal classification and regression tree (CART) algorithm. Despite the name, regression trees do not use linear regression methods as described earlier in this chapter; rather, they make predictions based on the average value of examples that reach a leaf.

Note

The CART algorithm is described in detail in Classification...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image