Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering OpenCV with Practical Computer Vision Projects

You're reading from   Mastering OpenCV with Practical Computer Vision Projects This is the definitive advanced tutorial for OpenCV, designed for those with basic C++ skills. The computer vision projects are divided into easily assimilated chapters with an emphasis on practical involvement for an easier learning curve.

Arrow left icon
Product type Paperback
Published in Dec 2012
Publisher Packt
ISBN-13 9781849517829
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (15) Chapters Close

Mastering OpenCV with Practical Computer Vision Projects
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Cartoonifier and Skin Changer for Android 2. Marker-based Augmented Reality on iPhone or iPad FREE CHAPTER 3. Marker-less Augmented Reality 4. Exploring Structure from Motion Using OpenCV 5. Number Plate Recognition Using SVM and Neural Networks 6. Non-rigid Face Tracking 7. 3D Head Pose Estimation Using AAM and POSIT 8. Face Recognition using Eigenfaces or Fisherfaces Index

Estimating the camera motion from a pair of images


Before we set out to actually find the motion between two cameras, let us examine the inputs and the tools we have at hand to perform this operation. First, we have two images of the same scene from (hopefully not extremely) different positions in space. This is a powerful asset, and we will make sure to use it. Now as far as tools go, we should take a look at mathematical objects that impose constraints over our images, cameras, and the scene.

Two very useful mathematical objects are the fundamental matrix (denoted by F) and the essential matrix (denoted by E). They are mostly similar, except that the essential matrix is assuming usage of calibrated cameras; this is the case for us, so we will choose it. OpenCV only allows us to find the fundamental matrix via the findFundamentalMat function; however, it is extremely simple to get the essential matrix from it using the calibration matrix K as follows:

Mat_<double> E = K.t() * F * K...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image