Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Build Your Own Programming Language

You're reading from   Build Your Own Programming Language A programmer's guide to designing compilers, interpreters, and DSLs for solving modern computing problems

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781800204805
Length 494 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Clinton  L. Jeffery Clinton L. Jeffery
Author Profile Icon Clinton L. Jeffery
Clinton L. Jeffery
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Section 1: Programming Language Frontends
2. Chapter 1: Why Build Another Programming Language? FREE CHAPTER 3. Chapter 2: Programming Language Design 4. Chapter 3: Scanning Source Code 5. Chapter 4: Parsing 6. Chapter 5: Syntax Trees 7. Section 2: Syntax Tree Traversals
8. Chapter 6: Symbol Tables 9. Chapter 7: Checking Base Types 10. Chapter 8: Checking Types on Arrays, Method Calls, and Structure Accesses 11. Chapter 9: Intermediate Code Generation 12. Chapter 10: Syntax Coloring in an IDE 13. Section 3: Code Generation and Runtime Systems
14. Chapter 11: Bytecode Interpreters 15. Chapter 12: Generating Bytecode 16. Chapter 13: Native Code Generation 17. Chapter 14: Implementing Operators and Built-In Functions 18. Chapter 15: Domain Control Structures 19. Chapter 16: Garbage Collection 20. Chapter 17: Final Thoughts 21. Section 4: Appendix
22. Assessments 23. Other Books You May Enjoy Appendix: Unicon Essentials

Appreciating the importance of garbage collection

In the beginning, programs were small, and the static allocation of memory was decided when a program was designed. The code was not that complicated, and programmers could lay out all the memory that they were going to use during the entire program as a set of global variables. Life was good.

Then, Moore's Law happened, and computers got bigger. Customers started demanding that programs handle arbitrary-sized data instead of accepting the fixed upper limits inherent in static allocation. Programmers invented structured programming and used function calls to organize larger programs in which most memory allocation was on the stack.

A stack provides a form of dynamic memory allocation. Stacks are great because you can allocate a big chunk of memory when a function is called and deallocate memory automatically when a function returns. The lifetime of a local memory object is tied strictly to the lifetime of the function call...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image