Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Building Recommender Systems with Machine Learning and AI
Building Recommender Systems with Machine Learning and AI

Building Recommender Systems with Machine Learning and AI: Get started with building intelligent recommender systems

Arrow left icon
Profile Icon Frank Kane
Arrow right icon
Free Trial
Video Oct 2022 11hrs 24mins 1st Edition
Video
zł241.99
Subscription
Free Trial
Arrow left icon
Profile Icon Frank Kane
Arrow right icon
Free Trial
Video Oct 2022 11hrs 24mins 1st Edition
Video
zł241.99
Subscription
Free Trial
Video
zł241.99
Subscription
Free Trial

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Learn how to build recommender systems using various methods and algorithms
  • Apply real-world learnings from Netflix and YouTube to your recommendation projects
  • A comprehensive, hands-on, and filled with practical coding exercises to leverage your learnings

Description

This course will teach you how to use Python, artificial intelligence (AI), machine learning, and deep learning to build a recommender system. From creating a simple recommendation engine to building hybrid ensemble recommenders, you will learn key concepts effectively and in a real-world context. The course starts with an introduction to the recommender system and Python. Learn how to evaluate recommender systems and explore the architecture of the recommender engine framework. Next, you will learn to understand how content-based recommendations work and get to grips with neighborhood-based collaborative filtering. Moving along, you will learn to grasp model-based methods used in recommendations, such as matrix factorization and Singular Value Decomposition (SVD). Next, you will learn to apply deep learning, artificial intelligence (AI), and artificial neural networks to recommendations and learn how to scale massive datasets with Apache Spark machine learning. Later, you will encounter real-world challenges of recommender systems and learn how to solve them. Finally, you will study the recommendation system of YouTube and Netflix and find out what a hybrid recommender is. By the end of this course, you will be able to build real-world recommendation systems that will help users discover new products and content online. All the resource files are added to the GitHub repository at: https://github.com/packtpublishing/building-recommender-systems-with-machine-learning-and-ai

Who is this book for?

This course is suitable for software developers, engineers, and computer scientists who are looking to build recommender systems using the principles of machine learning, deep learning, and artificial intelligence (AI). A basic understanding of Python programming and algorithms is needed to get started with this course.

What you will learn

  • Get a basic overview of the architecture of recommender systems
  • Test and evaluate recommendation algorithms with Python
  • Use K-Nearest-Neighbors to recommend items to users
  • Find solutions to common issues with large-scale recommender systems
  • Make session-based recommendations with recurrent neural networks
  • Use Apache Spark to compute recommendations at a large scale on a cluster

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Last updated date : Oct 28, 2022
Publication date : Sep 21, 2018
Length: 11hrs 24mins
Edition : 1st
Language : English
ISBN-13 : 9781789803273
Vendor :
Google
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Last updated date : Oct 28, 2022
Publication date : Sep 21, 2018
Length: 11hrs 24mins
Edition : 1st
Language : English
ISBN-13 : 9781789803273
Vendor :
Google
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 770.98
Hands-on Scikit-learn for Machine Learning
zł528.99
Building Recommender Systems with Machine Learning and AI
zł241.99
Total 770.98 Stars icon
Banner background image

Table of Contents

14 Chapters
Getting Started Chevron down icon Chevron up icon
Introduction to Python Chevron down icon Chevron up icon
Evaluating a Recommender System Chevron down icon Chevron up icon
A Recommender Engine Framework Chevron down icon Chevron up icon
Content-Based Filtering Chevron down icon Chevron up icon
Neighborhood-Based Collaborative Filtering Chevron down icon Chevron up icon
Matrix Factorization Methods Chevron down icon Chevron up icon
Introduction to Deep Learning (Optional) Chevron down icon Chevron up icon
Deep Learning for Recommender Systems Chevron down icon Chevron up icon
Scaling It Up Chevron down icon Chevron up icon
Real-World Challenges of Recommender Systems Chevron down icon Chevron up icon
Case Studies Chevron down icon Chevron up icon
Hybrid Approaches Chevron down icon Chevron up icon
Wrapping Up Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.