Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Processing with Optimus

You're reading from   Data Processing with Optimus Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801079563
Length 300 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Dr. Argenis Leon Dr. Argenis Leon
Author Profile Icon Dr. Argenis Leon
Dr. Argenis Leon
Luis Aguirre Contreras Luis Aguirre Contreras
Author Profile Icon Luis Aguirre Contreras
Luis Aguirre Contreras
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started with Optimus
2. Chapter 1: Hi Optimus! FREE CHAPTER 3. Chapter 2: Data Loading, Saving, and File Formats 4. Section 2: Optimus – Transform and Rollout
5. Chapter 3: Data Wrangling 6. Chapter 4: Combining, Reshaping, and Aggregating Data 7. Chapter 5: Data Visualization and Profiling 8. Chapter 6: String Clustering 9. Chapter 7: Feature Engineering 10. Section 3: Advanced Features of Optimus
11. Chapter 8: Machine Learning 12. Chapter 9: Natural Language Processing 13. Chapter 10: Hacking Optimus 14. Chapter 11: Optimus as a Web Service 15. Other Books You May Enjoy

Exploratory data analysis

Exploratory Data Analysis (EDA) is a crucial step when you start exploring your data. It can give you an overall overview of its main characteristics, such as minimum and maximum values, as well as mean and median values. Also, it can help you to detect patterns, data inconsistencies, and outliers.

One of the first steps when exploring your data is to apply EDA techniques so you can get a better understanding of the data you want to process. The main goals of applying this technique are as follows:

  • To maximize insight into a dataset
  • To uncover the underlying structure
  • To extract important variables
  • To detect outliers and anomalies

There are four ways in which we can categorize EDA:

  • Single variable, non-graphical: Here, the data analysis is applied to just one variable. The main purpose of univariate analysis is to describe the data and find patterns that exist within it.
  • Single variable, graphical: Graphical methods...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image