Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Generative Adversarial Networks with PyTorch 1.x

You're reading from   Hands-On Generative Adversarial Networks with PyTorch 1.x Implement next-generation neural networks to build powerful GAN models using Python

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789530513
Length 312 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
John Hany John Hany
Author Profile Icon John Hany
John Hany
Greg Walters Greg Walters
Author Profile Icon Greg Walters
Greg Walters
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to GANs and PyTorch
2. Generative Adversarial Networks Fundamentals FREE CHAPTER 3. Getting Started with PyTorch 1.3 4. Best Practices for Model Design and Training 5. Section 2: Typical GAN Models for Image Synthesis
6. Building Your First GAN with PyTorch 7. Generating Images Based on Label Information 8. Image-to-Image Translation and Its Applications 9. Image Restoration with GANs 10. Training Your GANs to Break Different Models 11. Image Generation from Description Text 12. Sequence Synthesis with GANs 13. Reconstructing 3D models with GANs 14. Other Books You May Enjoy

To get the most out of this book

You should have basic knowledge of Python and PyTorch.

Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at www.packt.com.
  2. Select the Support tab.
  3. Click on Code Downloads.
  4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR/7-Zip for Windows
  • Zipeg/iZip/UnRarX for Mac
  • 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-Generative-Adversarial-Networks-with-PyTorch-1.x. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

    # Derivative with respect to w3
d_w3 = np.matmul(np.transpose(self.x2), delta)
# Derivative with respect to b3
d_b3 = delta.copy()

Any command-line input or output is written as follows:

$ python -m torch.distributed.launch --nproc_per_node=NUM_GPUS YOUR_SCRIPT.py --YOUR_ARGUMENTS

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.
Tips and tricks appear like this.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image