Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Hbase Essentials
Hbase Essentials

Hbase Essentials: A practical guide to realizing the seamless potential of storing and managing high-volume, high-velocity data quickly and painlessly with HBase

eBook
zł59.99 zł125.99
Paperback
zł157.99
Subscription
Free Trial

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Hbase Essentials

Chapter 1. Introducing HBase

A relational database management system (RDBMS) is the right choice for most of the online transactional processing (OLTP) applications, and it also supports most of the online analytical processing (OLAP) systems. Large OLAP systems usually run very large queries that scan a wide set of records or an entire dataset containing billions of records (terabytes or petabytes in size) and face scaling issues. To address scaling issues using RDBMS, a huge investment becomes another point of concern.

The world of Big Data

Since the last decade, the amount of data being created is more than 20 terabytes per second and this size is only increasing. Not only volume and velocity but this data is also of a different variety, that is, structured and semi structured in nature, which means that data might be coming from blog posts, tweets, social network interactions, photos, videos, continuously generated log messages about what users are doing, and so on. Hence, Big Data is a combination of transactional data and interactive data. This large set of data is further used by organizations for decision making. Storing, analyzing, and summarizing these large datasets efficiently and cost effectively have become among the biggest challenges for these organizations.

In 2003, Google published a paper on the scalable distributed filesystem titled Google File System (GFS), which uses a cluster of commodity hardware to store huge amounts of data and ensure high availability by using the replication of data between nodes. Later, Google published an additional paper on processing large, distributed datasets using MapReduce (MR).

For processing Big Data, platforms such as Hadoop, which inherits the basics from both GFS and MR, were developed and contributed to the community. A Hadoop-based platform is able to store and process continuously growing data in terabytes or petabytes.

Note

The Apache Hadoop software library is a framework that allows the distributed processing of large datasets across clusters of computers.

However, Hadoop is designed to process data in the batch mode and the ability to access data randomly and near real time is completely missing. In Hadoop, processing smaller files has a larger overhead compared to big files and thus is a bad choice for low latency queries.

Later, a database solution called NoSQL evolved with multiple flavors, such as a key-value store, document-based store, column-based store, and graph-based store. NoSQL databases are suitable for different business requirements. Not only do these different flavors address scalability and availability but also take care of highly efficient read/write with data growing infinitely or, in short, Big Data.

Note

The NoSQL database provides a fail-safe mechanism for the storage and retrieval of data that is modeled in it, somewhat different from the tabular relations used in many relational databases.

The origin of HBase

Looking at the limitations of GFS and MR, Google approached another solution, which not only uses GFS for data storage but it is also used for processing the smaller data files very efficiently. They called this new solution BigTable.

Note

BigTable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers.

Welcome to the world of HBase, http://hbase.apache.org/. HBase is a NoSQL database that primarily works on top of Hadoop. HBase is based on the storage architecture followed by the BigTable. HBase inherits the storage design from the column-oriented databases and the data access design from the keyvalue store databases where a key-based access to a specific cell of data is provided.

Note

In column-oriented databases, data grouped by columns and column values is stored contiguously on a disk. Such a design is highly I/O effective when dealing with very large data sets used for analytical queries where not all the columns are needed.

HBase can be defined as a sparse, distributed, persistent, multidimensional sorted map, which is indexed by a row key, column key, and timestamp. HBase is designed to run on a cluster of commodity hardware and stores both structured and semi-structured data. HBase has the ability to scale horizontally as you add more machines to the cluster.

Use cases of HBase

There are a number of use cases where HBase can be a storage system. This section discusses a few of the popular use cases for HBase and the well-known companies that have adopted HBase. Let's discuss the use cases first:

  • Handling content: In today's world, a variety of content is available for the users for consumption. Also, the variety of application clients, such as browser, mobile, and so on, leads to an additional requirement where each client needs the same content in different formats. Users not only consume content but also generate a variety of content in a large volume with a high velocity, such as tweets, Facebook posts, images, bloging, and many more. HBase is the perfect choice as the backend of such applications, for example, many scalable content management solutions are using HBase as their backend.
  • Handling incremental data: In many use cases, trickled data is added to a data store for further usage, such as analytics, processing, and serving. This trickled data could be coming from an advertisement's impressions such as clickstreams and user interaction data or it can be time series data. HBase is used for storage in all such cases. For example, Open Time Series Database (OpenTSDB) uses HBase for data storage and metrics generation. The counters feature (discussed in Chapter 5, The HBase Advanced API) is used by Facebook for counting and storing the "likes" for a particular page/image/post.

Some of the companies that are using HBase in their respective use cases are as follows:

  • Facebook (www.facebook.com): Facebook is using HBase to power its message infrastructure. Facebook opted for HBase to scale from their old messages infrastructure which handled over 350 million users, sending over 15 billion person-to-person messages per month. HBase was selected due to the excellent scalability and performance for big workloads, along with autoload balancing and failover features and so on. Facebook also uses HBase for counting and storing the "likes" contributed by users.
  • Meetup (www.meetup.com): Meetup uses HBase to power a site-wide, real-time activity feed system for all of its members and groups. In its architecture, group activity is written directly to HBase and indexed per member, with the member's custom feed served directly from HBase for incoming requests.
  • Twitter (www.twitter.com): Twitter uses HBase to provide a distributed, read/write backup of all the transactional tables in Twitter's production backend. Later, this backup is used to run MapReduce jobs over the data. Additionally, its operations team uses HBase as a time series database for cluster-wide monitoring / performance data.
  • Yahoo (www.yahoo.com): Yahoo uses HBase to store document fingerprints for detecting near-duplications. With millions of rows in the HBase table, Yahoo runs a query for finding duplicated documents with real-time traffic.

Tip

The source for the preceding mentioned information is http://wiki.apache.org/hadoop/Hbase/PoweredBy.

Installing HBase

HBase is an Apache project and the current Version, 0.98.7, of HBase is available as a stable release. HBase Version 0.98.7 supersedes Version 0.94.x and 0.96.x.

Note

This book only focuses on HBase Version 0.98.7, as this version is fully supported and tested with Hadoop Versions 2.x and deprecates the use of Hadoop 1.x.

Hadoop 2.x is much faster compared to Hadoop 1.x and includes important bug fixes that will improve the overall HBase performance.

Older versions, 0.96.x, of HBase which are now extinct, supported both versions of Hadoop (1.x and 2.x). The HBase version prior to 0.96.x only supported Hadoop 1.x.

HBase is written in Java, works on top of Hadoop, and relies on ZooKeeper. A HBase cluster can be set up in either local or distributed mode. Distributed mode can further be classified into either pseudo-distributed or fully distributed mode.

Note

HBase is designed and developed to work on kernel-based operating systems; hence, the commands referred to in this book are only for a kernel-based OS, for example, CentOS. In the case of Windows, it is recommended that you have a CentOS-based virtual machine to play with HBase.

An HBase cluster requires only Oracle Java to be installed on all the machines that are part of the cluster. In case any other flavor of Java, such as OpenJDK, is installed with the operating system, it needs to be uninstalled first before installing Oracle Java. HBase and other components such as Hadoop and ZooKeeper require a minimum of Java 6 or later.

Installing Java 1.7

Perform the following steps for installing Java 1.7 or later:

  1. Download the jdk-7u55-linux-x64.rpm kit from Oracle's website at http://www.oracle.com/technetwork/java/javase/downloads/index.html.
  2. Make sure that the file has all the permissions before installation for the root user using the following command:
    [root@localhost opt]#chmod +x jdk-7u55-linux-x64.rpm
    
  3. Install RPM using the following command:
    [root@localhost opt]#rpm –ivh jdk-7u55-linux-x64.rpm
    
  4. Finally, add the environment variable, JAVA_HOME. The following command will write the JAVA_HOME environment variable to the /etc/profile file, which contains a system-wide environment configuration:
    [root@localhost opt]# echo "export JAVA_HOME=/usr/java/jdk1.7.0_55" >> /etc/profile
    
  5. Once JAVA_HOME is added to the profile, either close the command window and reopen it or run the following command. This step is required to reload the latest profile setting for the user:
    [root@localhost opt]# source /etc/profile
    

    Tip

    Downloading the example code

    You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com . If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

The local mode

The local or standalone mode means running all HBase services in just one Java process. Setting up HBase in the local mode is the easiest way to get started with HBase and can be used to explore further or for local development. The only step required is to download the recent release of HBase and unpack the archive (.tar) in some directory such as /opt. Perform the following steps to set up HBase in the local mode:

  1. Create the hbase directory using the following commands:
    [root@localhost opt]# mkdir myhbase
    [root@localhost opt]# cd myhbase
    
  2. Download the hbase binaries as the archive (.tar) files and unpack it, as shown in the following command:
    [root@localhost myhbase]# wget http://mirrors.sonic.net/apache/hbase/stable/hbase-0.98.7-hadoop2-bin.tar.gz
    

    In the preceding command, http://mirrors.sonic.net/apache/hbase/ can be different for different users, which is based on the user's location. Check the suggested mirror site at http://www.apache.org/dyn/closer.cgi/hbase/ for the new URL.

    Note

    HBase version 0.98.7 is available for Hadoop 1 and 2 as hbase-0.98.7-hadoop1-bin.tar.gz and hbase-0.98.7-hadoop2-bin.tar.gz. It is recommended that you use Hadoop 2 only with HBase 0.98.7, and Hadoop 1 is available as a deprecated support. In the local mode, a Hadoop cluster is not required as it can use the Hadoop binaries provided in the lib directory of HBase. Other versions of HBase can also be checked out at http://www.apache.org/dyn/closer.cgi/hbase/.

  3. Once the HBase binaries are downloaded, extract them using the following command:
    [root@localhost myhbase]# tar xvfz hbase-0.98.7-hadoop2-bin.tar.gz
    
  4. Add the environment variable, HBASE_HOME. The following command will write the HBASE_HOME environment variable to the /etc/profile file, which contains system-wide environment configuration:
    [root@localhost myhbase]# echo "export HBASE_HOME=/opt/myhbase/hbase-0.98.7-hadoop2" >> /etc/profile
    
  5. Once HBASE_HOME is added to the profile, either close the command window and reopen it or run the following command; this step is required to reload the latest profile settings for the user:
    [root@localhost opt]# source /etc/profile
    
  6. Edit the configuration file, conf/hbase-site.xml, and set the data directory for HBase by assigning a value to the property key named hbase.rootdir and hbase.zookeeper.property.dataDir, as follows:
      <property>
        <name>hbase.rootdir</name>
        <value>file:///opt/myhbase/datadirectory</value>
      </property>
     <property>
          <name>hbase.zookeeper.property.dataDir</name>
          <value>/opt/myhbase/zookeeper</value>
      </property>

    The default base directory value for the hbase.rootdir and hbase.zookeeper.property.dataDir properties is /tmp/hbase-${user.name}, that is, /tmp/hbase-root for the "root" user which may lead to the possibility of data loss at the time of server reboot. Hence, it is always advisable to set the value for this property to avoid a data-loss scenario.

  7. Start HBase and verify the output with the following command:
    [root@localhost opt]# cd /opt/myhbase/hbase-0.98.7-hadoop2
    [root@localhost hbase-0.98.7-hadoop2]# bin/start-hbase.sh
    

    This gives the following output:

    The local mode

HBase also comes with a preinstalled web-based management console that can be accessed using http://localhost:60010. By default, it is deployed on HBase's Master host at port 60010. This UI provides information about various components such as region servers, tables, running tasks, logs, and so on, as shown in the following screenshot:

The local mode

The HBase tables and monitored tasks are shown in the following screenshot:

The local mode

The following screenshot displays information about the HBase attributes, provided by the UI:

The local mode

Once the HBase setup is done correctly, the following directories are created in a local filesystem, as shown in the following screenshot:

The local mode

The pseudo-distributed mode

The standalone/local mode is only useful for basic operations and is not at all suitable for real-world workloads. In the pseudo-distributed mode, all HBase services (HMaster, HRegionServer, and Zookeeper) run as separate Java processes on a single machine. This mode can be useful during the testing phase.

In the pseudo-distributed mode, HDFS setup is another prerequisite (HDFS setup also needs to be present in pseudo-distributed mode). After setting up Hadoop and downloading the HBase binary, edit the conf/hbase-site.xml configuration file. Also, set the HBase in the running mode by assigning a value to the property key named hbase.cluster.distributed, as well as the data storage pointer to the running Hadoop HDFS instance by assigning a value to the property key named hbase.rootdir:

<property>
      <name>hbase.cluster.distributed</name>
      <value>true</value>
</property>

<property>
   <name>hbase.rootdir</name>
<value>hdfs://localhost:9000/hbase</value>
</property>

Once the settings are done, we can use the following command to start HBase:

[root@localhost opt]# cd /opt/myhbase/hbase-0.96.2-hadoop2
[root@localhost hbase-0.96.2-hadoop2]# bin/start-hbase.sh

Note

Before starting HBase, make sure that the Hadoop services are running and working fine.

Once HBase is configured correctly, the jps command should show the HMaster and HRegionServer processes running along with the Hadoop processes. Use the hadoop fs command in Hadoop's bin/ directory to list the directories created in HDFS as follows:

[root@localhost opt]# hadoop fs -ls /hbase
Found 7 items
drwxr-xr-x   - hbase users          0 2014-10-20 14:28 /hbase/.tmp
drwxr-xr-x   - hbase users          0 2014-10-20 17:29 /hbase/WALs
drwxr-xr-x   - hbase users          0 2014-10-20 14:38 /hbase/corrupt
drwxr-xr-x   - hbase users          0 2014-10-20 14:28 /hbase/data
-rw-r--r--   3 hbase users         42 2014-10-20 14:21 /hbase/hbase.id
-rw-r--r--   3 hbase users          7 2014-10-20 14:21 /hbase/hbase.version
drwxr-xr-x   - hbase users          0 2014-10-20 27:29 /hbase/oldWALs

The fully distributed mode

A pseudo-distributed mode, where all the HBase services (HMaster, HRegionServer, and Zookeeper) run as separate Java processes on a single machine, is preferred for a local development environment or test environment. However, for a production environment, fully distributed mode is a must. In the fully distributed mode, an HBase cluster is set up on multiple nodes and HBase services run on these different cluster nodes. To enable fully distributed mode, add the hbase.cluster.distributed property to conf/hbase-site.xml and set it to true; also point the hbase.rootdir HBase to the HDFS node:

<property>
   <name>hbase.rootdir</name>
   <value>hdfs://<HDFSNameNodeHost>:9000/hbase</value>
</property>
<property>
   <name>hbase.cluster.distributed</name>
   <value>true<value>
</property>

Note

This book does not touch upon information on building a fully distributed HBase cluster and also does not talk about the hardware considerations, such as, server configurations, network settings, and so on; and software considerations, such as server OS setting, Hadoop settings, and so on. For this book, it is recommended that you use either the local mode or the pseudo-distributed mode.

For understanding this mode in depth, the building blocks that play a vital role in a fully distributed HBase cluster need to be understood well. The next section will give you a glimpse of what these components are.

Understanding HBase cluster components

In fully distributed and pseudo-distributed modes, a HBase cluster has many components such as HBase Master, ZooKeeper, RegionServers, HDFS DataNodes, and so on, discussed as follows:

  • HBase Master: HBase Master coordinates the HBase cluster and is responsible for administrative operations. It is a lightweight process that does not require too many hardware resources. A large cluster might have multiple HBase Master components to avoid cases that have a single point of failure. In this highly available cluster with multiple HBase Master components, only once HBase Master is active and the rest of HBase Master servers get in sync with the active server asynchronously. Selection of the next HBase Master in case of failover is done with the help of the ZooKeeper ensemble.
  • ZooKeeper: ZooKeeper is a centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services. Similar to HBase Master, ZooKeeper is again a lightweight process. By default, a ZooKeeper process is started and stopped by HBase but it can be managed separately as well. The HBASE_MANAGES_ZK variable in conf/hbase-env.sh with the default value true signifies that HBase is going to manage ZooKeeper. We can specify the ZooKeeper configuration in the native zoo.cfg file or its values such as client, port, and so on directly in conf/hbase-site.xml. It is advisable that you have an odd number of ZooKeeper ensembles such as one/three/five for more host failure tolerance. The following is an example of hbase-site.xml with ZooKeeper settings:
    <property>
      <name>hbase.zookeeper.property.clientPort</name>
      <value>2222</value>
    </property>
    <property>
      <name>hbase.zookeeper.quorum</name>
      <value>ZooKeeperhost1, ZooKeeperhost2, ZooKeeperhost3<value>
    </property>
    <property>
      <name>hbase.zookeeper.property.dataDir</name>
      <value>/opt/zookeeper<value>
    </property>
    
  • RegionServers: In HBase, horizontal scalability is defined with a term called region. Regions are nothing but a sorted range of rows stored continuously. In HBase architecture, a set of regions is stored on the region server. By default, the region server runs on port 60030. In an HBase cluster based on HDFS, Hadoop DataNodes and RegionServers are typically called slave nodes as they are both responsible for server data and are usually collocated in the cluster. A list of the region servers is specified in the conf/regionservers file with each region server on a separate line, and the start/stop of these region servers is controlled by the script files responsible for an HBase cluster's start/stop.
  • HBase data storage system: HBase is developed using pluggable architecture; hence, for the data storage layer, HBase is not tied with HDFS. Rather, it can also be plugged in with other file storage systems such as the local filesystem (primarily used in standalone mode), S3 (Amazon's Simple Storage Service), CloudStore (also known as Kosmos filesystem) or a self-developed filesystem.

Apart from the mentioned components, there are other considerations as well, such as hardware and software considerations, that are not within the scope of this book.

Note

The backup HBase Master server and the additional region servers can be started in the pseudo-distributed mode using the utility provided bin directory as follows:

[root@localhost hbase-0.96.2-hadoop2]# bin/local-master-backup.sh 2 3 

The preceding command will start the two additional HBase Master backup servers on the same box. Each HMaster server uses three ports (16010, 16020, and 16030 by default) and the new backup servers will be using ports 16012/16022/16032 and 16013/16023/16033.

[root@localhost hbase-0.96.2-hadoop2]# bin/local-regionservers.sh start 2 3

The preceding command will start the two additional HBase region servers on the same box using ports 16202/16302.

Start playing

Now that we have everything installed and running, let's start playing with it and try out a few commands to get a feel of HBase. HBase comes with a command-line interface that works for both local and distributed modes. The HBase shell is developed in JRuby and can run in both interactive (recommended for simple commands) and batch modes (recommended for running shell script programs). Let's start the HBase shell in the interactive mode as follows:

[root@localhost hbase-0.98.7-hadoop2]# bin/hbase shell

The preceding command gives the following output:

Start playing

Type help and click on return to see a listing of the available shell commands and their options. Remember that all the commands are case-sensitive.

The following is a list of some simple commands to get your hands dirty with HBase:

  • status: This verifies whether HBase is up and running, as shown in the following screenshot:
    Start playing
  • create '<table_name>', '<column_family_name>': This creates a table with one column family. We can use multiple column family names as well, as shown in the following screenshot:
    Start playing
  • list: This provides the list of tables, as shown in the following screenshot:
    Start playing
  • put '<table_name>', '<row_num>', 'column_family:key', 'value': This command is used to put data in the table in a column family manner, as shown in the following screenshot. HBase is a schema-less database and provides the flexibility to store any type of data without defining it:
    Start playing
  • get '<table_name>', '<row_num>': This command is used to read a particular row from the table, as shown in the following screenshot:
    Start playing
  • scan '<table_name >': This scans the complete table and outputs the results, as shown in the following screenshot:
    Start playing
  • delete '<table_name>', '<row_num>', 'column_family:key': This deletes the specified value, as shown in the following screenshot:
    Start playing
  • describe '<table_name>': This describes the metadata information about the table, as shown in the following screenshot:
    Start playing
  • drop '<table_name>': This command will drop the table. However, before executing this command, we should first execute disable '<tablename>', as shown in the following screenshot:
    Start playing
  • Finally, exit the shell and stop using HBase, as shown in the following screenshot:
    Start playing

Note

Refer to the following link for more commands: http://wiki.apache.org/hadoop/Hbase/Shell

Summary

In this chapter, we started our journey by understanding what the NoSQL world is and then got introduced to HBase. We also learned how to install Apache HBase 0.98.7 and also set up an HBase cluster in different possible modes. Finally, we tried a few commands using the HBase command-line interface HBase shell. In the next chapter, we will take a look at the key concepts of HBase.

Left arrow icon Right arrow icon

Description

This book is intended for developers and Big Data engineers who want to know all about HBase at a hands-on level. For in-depth understanding, it would be helpful to have a bit of familiarity with HDFS and MapReduce programming concepts with no prior experience with HBase or similar technologies. This book is also for Big Data enthusiasts and database developers who have worked with other NoSQL databases and now want to explore HBase as another futuristic, scalable database solution in the Big Data space.

What you will learn

  • Realize the need for HBase
  • Download and set up HBase cluster
  • Grasp data modeling concepts in HBase and how to perform CRUD operations on data
  • Perform effective data scanning and data filtration in HBase
  • Understand data storage and replication in HBase
  • Explore HBase counters, coprocessors, and MapReduce integration
  • Get acquainted with different clients of HBase such as REST and Kundera ORM
  • Learn about cluster management and performance tuning in HBase

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Nov 14, 2014
Length: 164 pages
Edition : 1st
Language : English
ISBN-13 : 9781783987245
Vendor :
Apache
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Nov 14, 2014
Length: 164 pages
Edition : 1st
Language : English
ISBN-13 : 9781783987245
Vendor :
Apache
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just zł20 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 577.97
Hbase Essentials
zł157.99
Mastering Hadoop
zł221.99
Learning Hbase
zł197.99
Total 577.97 Stars icon
Banner background image

Table of Contents

8 Chapters
1. Introducing HBase Chevron down icon Chevron up icon
2. Defining the Schema Chevron down icon Chevron up icon
3. Advanced Data Modeling Chevron down icon Chevron up icon
4. The HBase Architecture Chevron down icon Chevron up icon
5. The HBase Advanced API Chevron down icon Chevron up icon
6. HBase Clients Chevron down icon Chevron up icon
7. HBase Administration Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.5
(2 Ratings)
5 star 0%
4 star 50%
3 star 50%
2 star 0%
1 star 0%
Ian Stirk Sep 29, 2015
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Hi,I have written a detailed chapter-by-chapter review of this book on www DOT i-programmer DOT info, the first and last parts of this review are given here. For my review of all chapters, search i-programmer DOT info for STIRK together with the book's title.This book aims at getting you started in programming with HBase, how does it fare?Hadoop is the most popular platform for processing big data, and HBase is the NoSQL database included with Hadoop. The book is aimed at software developers that have no previous experience of HBase, wanting a hands-on approach.Below is a chapter-by-chapter exploration of the topics covered.Chapter 1 Introducing HBaseThis chapter opens with the observation that relational database management systems (RDBMS) are unable to scale to process huge amounts of data in a timely manner. Instead, this is the realm of big data databases such as HBase.The chapter defines big data in terms of huge volumes, high velocity, and varied types of data. Currently 20 terabytes of data is created every second, and this metric is increasing. The foundations of big data processing were established by Google in their papers on the Google File System (GFS) storage, and MapReduce processing model. Google also produced details of a scalable Bigtable database which could handle millions of columns and billions of rows, HBase is based on Bigtable.The chapter continues with a look at how to install HBase together with its prerequisites. The various modes of running HBase are discussed, these are: local, pseudo-distributed and fully distributed.The various HBase cluster components are briefly described, namely:-HBase Master – coordinates HBase cluster/admin operations-Zookeeper – centralized service for distributed synchronization-Region Servers – store horizontal rows as regionsThe chapter ends with a look at the HBase shell, this provides an environment to run interactive commands or batches, it’s a useful tool for experimenting with HBase. Various commands are introduced, including: status, create table, list, get, put, scan, delete, describe, and drop.This chapter provides a useful introduction to HBase in terms of the history of big data, the need to process huge amounts of data, and an outline of the HBase components. Useful installation instructions are provided, together with a HBase shell tutorial for playing and testing with HBase.This chapter provides well written discussions which are generally easy to read, has helpful diagrams, outputs, scripts, and brief practical walkthroughs. There are useful links to other chapters. Sometimes, terms are used before they are defined (e.g. HMaster and Zookeeper). These traits apply to the whole of the book....ConclusionThe book has well-written discussions which are generally easy to read, helpful diagrams, outputs, scripts, and brief practical walkthroughs. There are useful links to other chapters.This book aims to get you started in programming with HBase, however, it deviates from this, containing as much administration detail as programming. Sometimes terms are used before they are defined (e.g. HMaster and Zookeeper), suggesting you need some knowledge of Hadoop. It would have been helpful to list where to go next to extend your HBase knowledge.This book will help you get up and running with HBase, show you how to use HBase from various clients, and give you an understanding of its internal structure, I can recommend it as a starter book.
Amazon Verified review Amazon
MMT Oct 31, 2016
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Easy to understand....
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.