In this chapter, we started with an introduction to a typical machine learning problem, online advertising click-through prediction, and the inherent challenges, including categorical features. We then looked at tree-based algorithms that can take in both numerical and categorical features. We then had an in-depth discussion about the decision tree algorithm: the mechanics, different types, how to construct a tree, and two metrics (Gini Impurity and entropy) that measure the effectiveness of a split at a node. After constructing a tree in an example by hand, we implemented the algorithm from scratch. We also learned how to use the decision tree package from scikit-learn and applied it to predict click-through. We continued to improve the performance by adopting the feature-based random forest bagging algorithm and the chapter ended with some ways to tune a random forest...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia