Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Generative Adversarial Networks with Keras

You're reading from   Hands-On Generative Adversarial Networks with Keras Your guide to implementing next-generation generative adversarial networks

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789538205
Length 272 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rafael Valle Rafael Valle
Author Profile Icon Rafael Valle
Rafael Valle
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Introduction and Environment Setup FREE CHAPTER
2. Deep Learning Basics and Environment Setup 3. Introduction to Generative Models 4. Section 2: Training GANs
5. Implementing Your First GAN 6. Evaluating Your First GAN 7. Improving Your First GAN 8. Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio
9. Progressive Growing of GANs 10. Generation of Discrete Sequences Using GANs 11. Text-to-Image Synthesis with GANs 12. TequilaGAN - Identifying GAN Samples 13. Whats next in GANs

Quantitative methods

The objective function used in GANs is a quantitative measure that provides information about each player's performance, discriminator, and generator in the GAN game. For example, in the first GAN objective function, the output of the discriminator on fake data provides information about how well the generator is fooling the discriminator and how well the discriminator can identify real data. Although this information is useful because it provides information about the status of the minimax game and how close it is to equilibrium, it provides absolutely no information about the images themselves.

In this context, researchers in the GAN community have been developing quantitative methods that can be used to measure image quality, variety, and satisfaction of specifications.

In this section, we will address a few of such measures, including the following...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image