Summary
In this chapter, we learned what is meant by simulation modeling. We understood the difference between modeling and simulation, and we discovered the strengths of simulation models, such as defects. To understand these concepts, we clarified the meaning of the terms that appear most frequently when dealing with these topics.
We then analyzed the different types of models: static versus dynamic, deterministic versus stochastic, and continuous versus discrete. We then explored the workflow connected to a numerical simulation process and highlighted the crucial steps. Furthermore, we analyzed in detail the discrete event systems that simulate a dynamic system whose states can take on logical or symbolic, rather than numerical, values. Finally, we studied some practical modeling cases to understand how to elaborate on a model starting from the initial considerations.
In the next chapter, we will learn how to approach a stochastic process and understand the random number simulation concepts. Then, we will explore the differences between pseudo and non-uniform random numbers, as well as the methods we can use for random distribution evaluation