Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Kubernetes and Docker - An Enterprise Guide
Kubernetes and Docker - An Enterprise Guide

Kubernetes and Docker - An Enterprise Guide: Effectively containerize applications, integrate enterprise systems, and scale applications in your enterprise

Arrow left icon
Profile Icon Scott Surovich Profile Icon Marc Boorshtein
Arrow right icon
€22.99 €32.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.6 (13 Ratings)
eBook Nov 2020 526 pages 1st Edition
eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Scott Surovich Profile Icon Marc Boorshtein
Arrow right icon
€22.99 €32.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.6 (13 Ratings)
eBook Nov 2020 526 pages 1st Edition
eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Kubernetes and Docker - An Enterprise Guide

Chapter 1: Docker and Container Essentials

Containers are one of the most transformational technologies that we have seen in years. Technology companies, corporations, and end users have all adopted it to handle everyday workloads. Increasingly, common off-the-shelf (COTS) applications are transforming from traditional installations into fully containerized deployments. With such a large technology shift, it is essential for anyone in the Information Technology realm to learn about containers.

In this chapter, we will introduce the problems that containers address. After an introduction to why containers are important, we will introduce the runtime that launched the modern container frenzy, Docker. By the end of this chapter, you will understand how to install Docker and how to use the most common Docker CLI commands.

In this chapter, we will cover the following topics:

  • Understanding the need for containerization
  • Understanding Docker
  • Installing Docker
  • Using the Docker CLI

Let's get started!

Technical requirements

This chapter has the following technical requirements:

  • An Ubuntu 18.04 server with a minimum of 4 GB of RAM, though 8 GB is suggested

You can access the code for this chapter by going to the following GitHub repository: https://github.com/PacktPublishing/Kubernetes-and-Docker-The-Complete-Guide.

Understanding the need for containerization

You may have experienced a conversation like this at your office or school:

Developer: "Here's the new application. It went through weeks of testing and you are the first to get the new release."

….. A little while later ….

User: "It's not working. When I click the submit button, it shows an error about a missing dependency."

Developer: "That's weird; it's working fine on my machine."

This is one of the most frustrating things a developer can encounter when delivering an application. Often, the issues that creep up are related to a library that the developer had on their machine, but it wasn't included in the distribution of the package. It may seem like an easy fix for this would be to include all the libraries alongside the release, but what if this release contains a newer library that overwrites the older version, which may be required for a different application?

Developers need to consider their new releases, as well as any potential conflicts with any existing software on the user's workstations. This often becomes a careful balancing act that requires larger deployment teams to test the application on different system configurations. It can also lead to additional rework for the developer or, in some extreme cases, full incompatibility with an existing application.

There have been various attempts to make application delivery easier over the years. First, there are solutions such as VMware's Thinapp, which virtualize san application (not to be confused with virtualizing an operating system). It allows you to package the application and its dependencies into a single executable package. This packaging eliminates the issues of an application's dependencies conflicting with another application's dependencies since the application is in a self-contained package. This provided application isolation not only eliminates dependency issues but also provides an enhanced level of security and eases the burden of operating system migrations.

You may or may not have heard of application streaming before reading this book. It sounds like a great solution to the "it worked on my machine" issue. There are many reasons it hasn't taken off as expected, though. For starters, most offerings are paid solutions that require a substantial investment. Besides licensing, they require a "clean PC," which means that for every application you want to virtualize, you need to start with a base system. The package you want to create uses the differences between the base installation and anything that was added after the initial system snapshot. The differences are then packaged into your distribution file, which can be executed on any workstation.

We've mentioned application virtualization to highlight that application issues such as "It works on my machine" have had different solutions over the years. Products such as Thinapp are just one attempt at solving the problem. Other attempts include running the application on a server running Citrix or Remote Desktop, Linux containers, and even virtual machines.

Introducing Docker

The industry and even end users needed something that was easier and cheaper – enter Docker containers. Containers are not a new technology; they have been used in various forms for years. What Docker did was make them accessible to the average developer.

Docker brought an abstraction layer to the masses. It was easy to use and didn't require a clean PC for every application before creating a package, thus offering a solution for dependency issues, but most attractive of all, it was free. Docker became a standard for many projects on GitHub, where teams would often create a Docker container and distribute the Docker image or Dockerfile to team members, providing a standard testing or development environment. This adoption by end users is what eventually brought Docker to the enterprise and, ultimately, what made it the standard it has become today.

While there are many books on Docker, this book focuses on the base topics of Docker that are used to interact with containers. This book will be focusing on what you will need to know when trying to use a local Kubernetes environment. There is a long and interesting history of Docker and how it evolved into the standard container image format that we use today. We encourage you to read about the company and how they ushered in the container world we know today.

While our focus is not to teach Docker inside-out, we felt that those of you who are new to Docker would benefit from a quick primer on general container concepts. If you have some Docker experience and understand terminology such as ephemeral and stateless, feel free to continue to the Installing Docker section.

Understanding Docker

This book was created with the assumption that you have some basic knowledge of Docker and container concepts. We realize that not everyone may have played with Docker or containers in the past, so we wanted to present a crash course on container concepts and using Docker.

Important Note

If you are new to containers, we suggest reading the documentation that can be found on Docker's website for additional information: https://docs.docker.com/.

Containers are ephemeral

The first topic to understand is that container images are ephemeral.

For those of you who are new to Docker, the term ephemeral means short-lived. By design, a container can be destroyed at any time and brought back up with no interaction from a user. In the preceding example, someone interactively added files to a web server. These added files are only temporary since the base image does not have these files included in it.

This means that once a container is created and running, any changes that are made to the image will not be saved once the container is removed, or destroyed, from the Docker host. Let's look at an example:

  1. You start a container running a web server using NGINX on your host without any base HTML pages.
  2. Using a Docker command, you execute a copy command to copy some web files into the container's filesystem.
  3. To test that the copy was successful, you browse to the website and confirm that it is serving the correct web pages.
  4. Happy with the results, you stop the container and remove it from the host. Later that day, you want to show a co-worker the website and you start your NGINX container. You browse to the website again, but when the site opens, you receive a 404 error (page not found error).

What happened to the files you uploaded before you stopped and removed the container from the host?

The reason your web pages cannot be found after the container was restarted is because all containers are ephemeral.

Whatever is in the base container image is all that will be included each time the container is initially started. Any changes that you make inside a container are short-lived.

If you needed to add permanent files to the existing image, you would need to rebuild the image with the files included or, as we will explain in the Persistent data section later in this chapter, you could mount a Docker volume in your container. At this point, the main concept to understand is that containers are ephemeral.

But wait! You may be wondering, "If containers are ephemeral, how did I add web pages to the server?". Ephemeral just means that changes will not be saved; it doesn't stop you from making changes to a running container.

Any changes made to a running container will be written to a temporary layer, called the container layer, which is a directory on the local host filesystem. The Docker storage driver is in charge of handling requests that use the container layer. This location will store any changes in the container's filesystem so that when you added the HTML pages to the container, they will be stored on the local host. The container layer is tied to the container ID of the running image and it will remain on the host system until the container is removed from Docker, either by using the CLI or by running a Docker prune job.

If a container is ephemeral and the image cannot be written to, how can you modify data in the container? Docker uses image layering to create multiple linked layers that appear as a single filesystem.

Docker images

At a high level, a Docker image is a collection of image layers, each with a JSON file that contains metadata for the layer. These are all combined to create the running application that you interact with when a container image is started.

You can read more about the contents of an image on Docker's GitHub at https://github.com/moby/moby/blob/master/image/spec/v1.md.

Image layers

As we mentioned in the previous section, a running container uses a container layer that is "on top" of the base image layer, as shown in the following diagram:

Figure 1.1 – Docker image layers

Figure 1.1 – Docker image layers

The image layers cannot be written to since they are in a read-only state, but the temporary container layer is in a writeable state. Any data that you add to the container is stored in this layer and will be retained as long as the container is running.

To deal with multiple layers efficiently, Docker implements copy-on-write, which means that if a file already exists, it will not be created. However, if a file is required that does not exist in the current image, it will be written. In the container world, if a file exists in a lower layer, the layers above it do not need to include it. For example, if layer 1 had a file called /opt/nginx/index.html in it, layer 2 does not need the same file in its layer.

This explains how the system handles files that either exist or do not exist, but what about a file that has been modified? There will be times where you'll need to "replace" a file that is in a lower layer. You may need to do this when you are building an image or as a temporary fix to a running container issue. The copy-on-write system knows how to deal with these issues. Since images read from the top down, the container uses only the highest layer file. If your system had a /opt/nginx/index.html file in layer 1 and you modified and saved the file, the running container would store the new file in the container layer. Since the container layer is the topmost layer, the new copy of index.html would always be read before the older version in the image layer.

Persistent data

We will talk about how to use persistent disks in Chapter 2, Working with Docker Data. For now, we will just provide a brief introduction.

Being limited to ephemeral-only containers would severely limit the use cases for Docker. It is very likely that you will have some use cases that will require persistent storage, or data that will remain if you stop a container.

This may seem like we are contradicting our earlier statement that containers are ephemeral, but that is still true. When you store data in the container image layer, the base image does not change. When the container is removed from the host, the container layer is also removed. If the same image is used to start a new container, a new container image layer is also created. So, the container is ephemeral, but by adding a Docker volume to the container, you can store data outside of the container, thus gaining data persistency.

Docker provides persistency through a few methods, which we will discuss in more detail in Chapter 2, Working with Docker Data, but for now, know that Docker does provide a method to persist your data.

Accessing services running in containers

We will talk about how to expose containers in Chapter 3, Understanding Docker Networking. For now, we will just provide a brief introduction.

Unlike a physical machine or a virtual machine, containers do not connect to a network directly. When a container needs to send or receive traffic, it goes through the Docker host system using a bridged NAT network connection. This means that when you run a container and you want to receive incoming traffic requests, you need to expose the ports for each of the containers that you wish to receive traffic on. On a Linux-based system, iptables has rules to forward traffic to the Docker daemon, which will service the assigned ports for each container.

That completes the introduction to base containers and Docker. In the next section, we will explain how to install Docker on a host.

Installing Docker

The hands-on exercises in this book will require that you have a working Docker host. You can follow the steps in this book, or you can execute the script located in this book's GitHub repository, in the chapter1 directory, called install-docker.sh.

Today, you can install Docker on just about every hardware platform out there. Each version of Docker acts and looks the same on each platform, making development and using Docker easy for people who need to develop cross-platform applications. By making the functions and commands the same between different platforms, developers do not need to learn a different container runtime to run images.

The following is a table of Docker's available platforms. As you can see, there are installations for multiple operating systems, as well as multiple CPU architectures:

Figure 1.2 – Available Docker platforms

Figure 1.2 – Available Docker platforms

Important Note

Images that are created using one architecture cannot run on a different architecture. This means that you cannot create an image based on x86 hardware and expect that same image to run on your Raspberry Pi running an ARM processor. It's also important to note that while you can run a Linux container on a Windows machine, you cannot run a Windows container on a Linux machine.

The installation procedures that are used to install Docker vary between platforms. Luckily, Docker has documented many of the installation procedures on their website: https://docs.docker.com/install/.

In this chapter, we will install Docker on an Ubuntu 18.04 system. If you do not have an Ubuntu machine to install on, you can still read about the installation steps, as each step will be explained and does not require that you have a running system to understand the process. If you have a different Linux installation, you can use the installation procedures outlined on Docker's site at https://docs.docker.com/. Steps are provided for CentOS, Debian, Fedora, Ubuntu, and there are generic steps for other Linux distributions.

Preparing to install Docker

Before we start the installation, we need to consider what storage driver to use. The storage driver is what provides the union filesystem, which manage the layers of the container and how the writeable layer of the container is accessed.

In most installations, you won't need to change the default storage driver since a default option will be selected. If you are running a Linux kernel that is at least version 4.0 or above, your Docker installation will use the overlay2 storage driver; earlier kernels will install the AUFS storage driver.

For reference, along with the overlay2 and AUFS drivers, Docker supports the devicemapper, btrfs, zfs, and vfs storage drivers. However, these are rarely used in new systems and are only mentioned here as a reference.

If you would like to learn about each storage driver, take a look at the following Docker web page, which details each driver and their use cases: https://docs.docker.com/storage/storagedriver/select-storage-driver/.

Now that you understand the storage driver requirements, the next step is to select an installation method. You can install Docker using one of three methods:

  • Add the Docker repositories to your host system.
  • Install the package manually.
  • Use a supplied installation script from Docker.

The first option is considered the best option since it allows for easy installation and making updates to the Docker engine. The second option is useful for enterprises that do not have internet access to servers, also known as "air-gapped" servers. The third option is used to install edge and testing versions of Docker and is not suggested for production use.

Since the preferred method is to add Docker's repository to our host, we will use that option and explain the process we should use to add the repository and install Docker.

Installing Docker on Ubuntu

Now that we have finished preparing everything, let's install Docker:

  1. The first step is to update the package index by executing apt-get update:
    sudo apt-get update
  2. Next, we need to add any packages that may be missing on the host system to allow HTTPS apt access:
    sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-properties-common
  3. To pull packages from Docker's repository, we need to add their keys. You can add keys by using the following command, which will download the gpg key and add it to your system:
    curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add –
  4. Now, add Docker's repository to your host system:
    sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
  5. With all the prerequisites completed, you can install Docker on your server:
    sudo apt-get update sudo apt-get install docker-ce docker-ce-cli containerd.io
  6. Docker is now installed on your host, but like most new services, Docker is not currently running and has not been configured to start with the system. To start Docker and enable it on startup, use the following command:
    sudo systemctl enable docker && systemctl start docker

Now that we have Docker installed, let's get some configuration out of the way. First, we'll grant permissions to Docker.

Granting Docker permissions

In a default installation, Docker requires root access, so you will need to run all Docker commands as root. Rather than using sudo with every Docker command, you can add your user account to a new group on the server that provides Docker access without requiring sudo for every command.

If you are logged on as a standard user and try to run a Docker command, you will receive an error:

Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Get http://%2Fvar%2Frun%2Fdocker.sock/v1.40/images/json: dial unix /var/run/docker.sock: connect: permission denied

To allow your user, or any other user you may want to add to execute Docker commands, you need to create a new group and add the users to that group. The following is an example command you can use to add the currently logged on user:

sudo groupadd docker sudo usermod -aG docker $USER

The first command creates the docker group, while the second command adds the user account that you are currently logged in with to the docker group.

To add the new membership to your account, you need to log off from the system and log back on, which will update your groups.

Finally, you can test that it works by running the standard hello world image (note that we do not require sudo to run the Docker command):

docker run hello-world

If you see the following output, then you have successfully installed Docker and granted your non-root account access to Docker:

Figure 1.3 – Output for hello-world

Figure 1.3 – Output for hello-world

Now that we've granted Docker permission to run without sudo, we can start unlocking the commands at our disposal by learning how to use the Docker CLI.

Using the Docker CLI

You used the Docker CLI when you ran the hello-world container to test your installation. The Docker command is what you will use to interact with the Docker daemon. Using this single executable, you can do the following, and more:

  • Start and stop containers
  • Pull and push images
  • Run a shell in an active container
  • Look at container logs
  • Create Docker volumes
  • Create Docker networks
  • Prune old images and volumes

This chapter is not meant to include an exhaustive explanation of every Docker command; instead, we will explain some of the common commands that you will need to use to interact with the Docker daemon and containers. Since we consider volumes and networking to be very important to understand for this book, we will go into additional details on those topics.

You can break down Docker commands into two categories: general Docker commands and Docker management commands. The standard Docker commands allow you to manage containers, while management commands allow you to manage Docker options such as managing volumes and networking.

docker help

It's common to forget an option or the syntax for a command, and Docker realizes this. Whenever you get stuck trying to remember a command, you can always use the docker help command to refresh your memory.

docker run

To run a container, use the docker run command with the provided image name. Before executing a docker run command, you should understand the options you can supply when starting a container.

In its simplest form, an example command you can use to run a NGINX web server would be docker run bitnami/nginx:latest. While this will start a container running NGINX, it will run in the foreground:

Figure 1.4 – NGINX container startup

Figure 1.4 – NGINX container startup

To run a container as a background process, you need to add the -d option to your Docker command, which will run your container in detached mode. Now, when you run a detached container, you will only see the container ID, instead of the interactive, or attached, screen:

Figure 1.5 – Docker run output

Figure 1.5 – Docker run output

By default, containers will be given a random name once they are started. In our previous detached example, the container has been given the name silly_keldysh:

Figure 1.6 – Docker naming example

If you do not assign a name to your container, it can quickly get confusing as you start to run multiple containers on a single host. To make management easier, you should always start your container with a name that will make it easier to manage. Docker provides another option with the run command: the --name option. Building on our previous example, we will name our container nginx-test. Our new docker run command will be as follows:

docker run --name nginx-test -d bitnami/nginx:latest

Just like running any detached image, this will return the containers ID, but not the name you provided. In order to verify the container ran with the name nginx-test, we can list the containers using the docker ps command.

docker ps

Every day, you will need to retrieve a list of running containers or a list of containers that have been stopped. The Docker CLI has an option called ps that will list all running containers, or if you add an extra option to the ps command, all containers that are running and have been stopped. The output will list the containers, including their container ID, image tag, entry command, the creation date, status, ports, and the container name. The following is an example of containers that are currently running:

Figure 1.7 – Currently running containers

This is helpful if the container you are looking for is currently running. What if the container was stopped, or even worse, what if you started the container and it failed to start and then stopped? You can view the status of all containers, including previously run containers, by adding the -a option to the docker ps command. When you execute docker ps -a, you will see the same output from a standard ps command, but you will notice that the list may include additional containers.

How can you tell what containers are running versus which ones have stopped? If you look at the STATUS field of the list, the running containers will show a running time; for example, Up xx hours, or Up xx days. However, if the container has been stopped for any reason, the status will show when it stopped; for example, Exited (1) 3 days ago.

Figure 1.8 – Docker PS output

Figure 1.8 – Docker PS output

A stopped container does not mean there was an issue running the image. There are containers that may execute a single task and, once completed, the container may stop gracefully. One way to determine whether an exit was graceful or if it was due to a failed startup is to check the logs of the container.

docker start and stop

To stop a running container, use the docker stop option with the name of the container you want to stop. You may wish to stop a container due to the resources on the host since you may have limited resources and can only run a few containers simultaneously.

If you need to start that container at a future time for additional testing or development, execute docker start container name, which will start the container with all of the options that it was originally started with, including any networks or volumes that were assigned.

docker attach

You may need to access a container interactively to troubleshoot an issue or to look at a log file. One method to connect to a running container is to use the docker attach container name command. When you attach to a running container, you will connect to the running containers process, so if you attach to a container running a process, you are not likely to just see a command prompt of any kind. In fact, you may see nothing but a blank screen for some time until the container outputs some data to the screen.

You must be careful once you attach to the container – you may accidentally stop the running process and, in turn, stop the container. Let's use an example of attaching to a web server running NGINX. First, we need to verify that the container is running using docker ps:

Figure 1.9 – docker ps output

Figure 1.9 – docker ps output

Using the attach command, we execute docker attach bbadb2bddaab:

Figure 1.10 – docker attach output

Figure 1.10 – docker attach output

As shown in the preceding screenshot, once you attach to the running container process, it appears that nothing is happening. When you attach to a process, you will only be able to interact with the process, and the only output you will see is data being sent to standard output. In the case of the NGINX container, the attach command has attached to the NGINX process. To show this, we will leave the attachment and curl to the web server from another session. Once we curl to the container port, you will see logs outputted to the attached console:

Figure 1.11 – STDOUT output from the container

Figure 1.11 – STDOUT output from the container

Attaching to a running container has varying benefits, depending on what is running in the container.

We mentioned that you need to be careful once you attach to the container. Those who are new to Docker may attach to the NGINX image and assume that nothing is happening on the server or the attach failed. Since they think that there may be an issue, since it's just sitting there, they may decide to break out of the container using the standard Ctrl + C keyboard command. This will send them back to a bash prompt, where they may run docker ps to look at the running containers:

Figure 1.12 – docker ps output

Figure 1.12 – docker ps output

Where is the NGINX container? We didn't execute a docker stop command, and the container was running until we attached to the container. Why did the container stop after the attachment?

When an attachment is made to a container, you are attached to the running process. All keyboard commands will act in the same way as if you were at a physical server that was running NGINX in an interactive shell. This means that when the user used Ctrl + C to return to a prompt, they stopped the running NGINX process. If a container's running process stops, the container will also stop, and that's why the docker ps command does not show a running container.

Rather than use ctrl-c to return to a prompt, the user should have used Ctrl + P, followed by Ctrl + Q.

There is an alternative to the attach command: the docker exec command. The exec command differs from an attach command since you supply the process to execute on the container.

docker exec

A better option when it comes to interacting with a running container is the exec command. Rather than attach to the container, you can use the docker exec command to execute a process in the container. You need to supply the container name and the process you want to execute in the image. Of course, the process must be included in the running image – if you do not have the bash executable in the image, you will receive an error when trying to execute bash in the container.

We will use a NGINX container as an example again. We will verify that NGINX is running using docker ps and then using the container ID or the name, we execute into the container. The command syntax is docker exec <options> <container name> <process>:

Figure 1.13 – docker exec example

Figure 1.13 – docker exec example

The option we included is -it, which tells exec to run in an interactive TTY session. Here, the process we want to execute is bash. Notice how the name changed from the original user and hostname. The host name is Blade, while the container name is 0a7c916e7411. You may also have noticed that the current working directory changed from ~ to /app and that the prompt is not running as a root user, as shown by the $ prompt.

You can use this session the same way you would a standard SSH connection; you are running bash in the container.

Since we are not attached to the container, ctrl-c will not stop any process from running. To exit an interactive session, you only need to type in exit, followed by Enter, to exit the container. If you then run docker ps, you will notice that the container is still in a running state:

Figure 1.14 – docker ps output

Figure 1.14 – docker ps output

Next, let's see what we can learn about Docker log files.

docker logs

The docker logs command allows you to retrieve logs from a container using the container name or container ID that you retrieved using the docker ps command. You can view the logs from any container that was listed in your ps command; it doesn't matter if it's currently running or stopped.

Log files are often the only way to troubleshoot why a container may not be starting up, or why a container is in an exited state. For example, if you attempted to run an image and the image starts and suddenly stops, you may find the answer by looking at the logs for that container.

To look at the logs for a container, you can use the docker logs <container ID or name> command.

To view the logs for a container with a container ID of 7967c50b260f, you would use the following command:

docker logs 7967c50b260f

This will output the logs from the container to your screen, which may be very long and verbose. Since many logs may contain a lot of information, you can limit the output by supplying the logs command with additional options. The following table lists the options available for viewing logs:

docker rm

Once you name a container, the assigned name cannot be used to start a different container unless you remove it using the docker rm command. If you had a container running called nginx-test that was stopped and you attempted to start another container with the name nginx-test, the Docker daemon would return an error, stating that the name is in use:

Figure 1.15 – Docker naming conflict error

Figure 1.15 – Docker naming conflict error

This container is not running, but the daemon knows that the container name was used previously and that it's still in the list of previously run containers.

If you want to reuse the same name, you need to remove the container before starting another container with that name. This is a common scenario when you are testing container images. You may start a container only to discover an issue with the application or image. You stop the container, fix the image/application issue, and want to redeploy using the same name. Since the name was in use previously and is still part of the Docker history, you will need to remove the image before reusing the name.

We haven't discussed volumes yet, but when removing a container that has a volume, or volumes, attached, it's a good practice to add the -v option to your remove command. Adding the -v option to the docker rm command will remove any volumes that were attached to the container.

Summary

In this chapter, you learned how Docker can be used to solve common development issues, including the dreaded "It works on my machine" problem. We also presented an introduction to the most commonly used Docker CLI commands that you will use on a daily basis. We closed out this chapter by looking and how to handle persistent data for a container and customizing container networking.

In the next chapter, we will cover why, and how, containers use persistent data. We will explain each data type that can be attached to a container, including volumes, bind mounts, and tmpfs.

Questions

  1. A single Docker image can be used on any Docker host, regardless of the architecture used.

    A. True

    B. False

  2. What does Docker use to merge multiple image layers into a single filesystem?

    A. Merged filesystem

    B. NTFS filesystem

    C. EXT4 filesystem

    D. Union filesystem

  3. What is the most commonly used Docker storage driver when using a Kernel that is above version 4.0?

    A. AUFS

    B. ZFS

    C. VFS

    D. Overlay2

  4. When you edit a container's filesystem interactively, what layer are the changes written to?

    A. Operating system layer

    B. Bottom-most layer

    C. Container layer

    D. Ephemeral layer

  5. Assuming the image contains the required binaries, what Docker command allows you to gain access to a container's bash prompt?

    A. docker shell -it <container> /bin/bash

    B. docker run -it <container> /bin/bash

    C. docker exec -it <container> /bin/bash

    D. docker spawn -it <container> /bin/bash

  6. When a container is stopped, the Docker daemon will delete all traces of the container.

    A. True

    B. False

  7. What command will show you a list of all containers, including any stopped containers?

    A. docker ps -all

    B. docker ps -a

    C. docker ps -list

    D. docker list all

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Find out how to add enterprise features to a Kubernetes cluster with theory and exercises to guide you
  • Understand advanced topics including load balancing, externalDNS, IDP integration, security, auditing, backup, and CI/CD
  • Create development clusters for unique testing requirements, including running multiple clusters on a single server to simulate an enterprise environment

Description

Containerization has changed the DevOps game completely, with Docker and Kubernetes playing important roles in altering the flow of app creation and deployment. This book will help you acquire the knowledge and tools required to integrate Kubernetes clusters in an enterprise environment. The book begins by introducing you to Docker and Kubernetes fundamentals, including a review of basic Kubernetes objects. You’ll then get to grips with containerization and understand its core functionalities, including how to create ephemeral multinode clusters using kind. As you make progress, you’ll learn about cluster architecture, Kubernetes cluster deployment, and cluster management, and get started with application deployment. Moving on, you’ll find out how to integrate your container to a cloud platform and integrate tools including MetalLB, externalDNS, OpenID connect (OIDC), pod security policies (PSPs), Open Policy Agent (OPA), Falco, and Velero. Finally, you will discover how to deploy an entire platform to the cloud using continuous integration and continuous delivery (CI/CD). By the end of this Kubernetes book, you will have learned how to create development clusters for testing applications and Kubernetes components, and be able to secure and audit a cluster by implementing various open-source solutions including OpenUnison, OPA, Falco, Kibana, and Velero.

Who is this book for?

This book is for anyone interested in DevOps, containerization, and going beyond basic Kubernetes cluster deployments. DevOps engineers, developers, and system administrators looking to enhance their IT career paths will also find this book helpful. Although some prior experience with Docker and Kubernetes is recommended, this book includes a Kubernetes bootcamp that provides a description of Kubernetes objects to help you if you are new to the topic or need a refresher.

What you will learn

  • Create a multinode Kubernetes cluster using kind
  • Implement Ingress, MetalLB, and ExternalDNS
  • Configure a cluster OIDC using impersonation
  • Map enterprise authorization to Kubernetes
  • Secure clusters using PSPs and OPA
  • Enhance auditing using Falco and EFK
  • Back up your workload for disaster recovery and cluster migration
  • Deploy to a platform using Tekton, GitLab, and ArgoCD

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Nov 06, 2020
Length: 526 pages
Edition : 1st
Language : English
ISBN-13 : 9781839212147

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Nov 06, 2020
Length: 526 pages
Edition : 1st
Language : English
ISBN-13 : 9781839212147

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 134.97
Mastering Kubernetes
€59.99
Kubernetes and Docker - An Enterprise Guide
€41.99
The Kubernetes Workshop
€32.99
Total 134.97 Stars icon
Banner background image

Table of Contents

19 Chapters
Section 1: Docker and Container Fundamentals Chevron down icon Chevron up icon
Chapter 1: Docker and Container Essentials Chevron down icon Chevron up icon
Chapter 2: Working with Docker Data Chevron down icon Chevron up icon
Chapter 3: Understanding Docker Networking Chevron down icon Chevron up icon
Section 2: Creating Kubernetes Development Clusters, Understanding objects, and Exposing Services Chevron down icon Chevron up icon
Chapter 4: Deploying Kubernetes Using KinD Chevron down icon Chevron up icon
Chapter 5: Kubernetes Bootcamp Chevron down icon Chevron up icon
Chapter 6: Services, Load Balancing, and External DNS Chevron down icon Chevron up icon
Section 3: Running Kubernetes in the Enterprise Chevron down icon Chevron up icon
Chapter 7: Integrating Authentication into Your Cluster Chevron down icon Chevron up icon
Chapter 8: RBAC Policies and Auditing Chevron down icon Chevron up icon
Chapter 9: Deploying a Secured Kubernetes Dashboard Chevron down icon Chevron up icon
Chapter 10: Creating PodSecurityPolicies Chevron down icon Chevron up icon
Chapter 11: Extending Security Using Open Policy Agent Chevron down icon Chevron up icon
Chapter 12: Auditing using Falco and EFK Chevron down icon Chevron up icon
Chapter 13: Backing Up Workloads Chevron down icon Chevron up icon
Chapter 14: Provisioning a Platform Chevron down icon Chevron up icon
Assessments Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.6
(13 Ratings)
5 star 84.6%
4 star 0%
3 star 7.7%
2 star 7.7%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




C. C Chin Dec 09, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Office
Amazon Verified review Amazon
Jack Chun Dec 12, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book covers most of the topics when an enterprise would like to adopt Kubernetes. What’s more, you hardly can find a coverage on these topics in the market!I love the layout this book - it has 3 sections. Firstly, it starts with docker - the fundamental of the Kubernetes. Then, a boot camp and how to get a handy KinD to get hand on experience. Finally, the best part of the book - Running Kubernetes in enterprise.Also, I would recommend read this book more than one time. Personally, I will get something new when reading it again!I am sure the book definitely will bring you to another level understanding of Kubernetes and give you the best of your money :)
Amazon Verified review Amazon
B.A. Dec 05, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Unique format for a book, they have hands-on exercises mixed in with the reading, which makes the chapters fun to go through while reinforcing the chapter topics. I like this style of technical book and wish more would adopt a similar flow. The book does go into the Enterprise world, detailing topics like using JWT's for authentication, Impersonation, Auditing, and even metallb with a full dynamic DNS! Can you find these topics elsewhere? You could, if you wanted to browse dozens of blogs that include a 10,000 foot overview. Why do that when its all in a single book, with the same views to bring them all together. I recommend this book to anyone in the K8s world.
Amazon Verified review Amazon
Kover Dec 26, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
There are no shortages of Kubernetes books on the market today, it's the hot technology in today's world, which makes for a big job market. Based on experience, from trying to hire people for our Kubernetes team, there is a small pool of people who know how to integrate a Kubernetes cluster with external systems. Topics in this book directly map to and answer 80% of the interview questions we ask potential candidates. Nobody that we have interviewed has been able to answer more than 50% of the questions we ask. Questions like what is an aggregated role in Kubernetes always lead to blank stares. Even that's covered in the book. The fact that the book contains so many answers to so many of our interview questions makes it one of my favorite Kubernetes books on the market.
Amazon Verified review Amazon
Jennifer L. Dec 06, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Really does cover Kubernetes in the enterprise well, going over topics and tools that aren't covered in other books.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.