Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Using TensorFlow Cookbook

You're reading from   Machine Learning Using TensorFlow Cookbook Create powerful machine learning algorithms with TensorFlow

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781800208865
Length 416 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Konrad Banachewicz Konrad Banachewicz
Author Profile Icon Konrad Banachewicz
Konrad Banachewicz
Luca Massaron Luca Massaron
Author Profile Icon Luca Massaron
Luca Massaron
Alexia Audevart Alexia Audevart
Author Profile Icon Alexia Audevart
Alexia Audevart
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started with TensorFlow 2.x 2. The TensorFlow Way FREE CHAPTER 3. Keras 4. Linear Regression 5. Boosted Trees 6. Neural Networks 7. Predicting with Tabular Data 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Transformers 11. Reinforcement Learning with TensorFlow and TF-Agents 12. Taking TensorFlow to Production 13. Other Books You May Enjoy
14. Index

Managing Hyperparameter tuning with TensorBoard's HParams

Tuning hyperparameters in a machine learning project can be a real pain. The process is iterative and can take a long time to test all the hyperparameter combinations. But fortunately, HParams, a TensorBoard plugin, comes to the rescue. It allows testing to find the best combination of hyperparameters.

Getting ready

To illustrate how the HParams plugin works, we will use a sequential model implementation on the MNIST dataset. We'll configure HParams and compare several hyperparameter combinations in order to find the best hyperparameter optimization.

How to do it...

  1. First, we'll load the libraries necessary for the script:
    import tensorflow as tf
    from tensorboard.plugins.hparams import api as hp
    import numpy as np
    import datetime
    
  2. Next, we'll load and prepare the MNIST dataset:
    (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image