Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Master machine learning techniques with R to deliver insights for complex projects

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783984527
Length 400 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A Process for Success FREE CHAPTER 2. Linear Regression – The Blocking and Tackling of Machine Learning 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis and Recommendation Engines 11. Time Series and Causality 12. Text Mining A. R Fundamentals Index

Summary

In this chapter, we reviewed two new classification techniques: KNN and SVM. The goal was to discover how these techniques work and the differences between them by building and comparing models on a common dataset in order to predict if an individual had diabetes. KNN involved both the unweighted and weighted nearest neighbor algorithms. These did not perform as well as the SVMs in predicting whether an individual had diabetes or not.

We examined how to build and tune both the linear and nonlinear support vector machines using the e1071 package. We used the extremely versatile caret package to compare the predictive ability of a linear and nonlinear support vector machine and saw that the nonlinear support vector machine with a sigmoid kernel performed the best.

Finally, we touched on how you can use the caret package to perform a crude feature selection as this is a difficult challenge with a blackbox technique such as SVM. This is a major challenge when using these techniques and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image