Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with Java Cookbook

You're reading from   Natural Language Processing with Java Cookbook Over 70 recipes to create linguistic and language translation applications using Java libraries

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789801156
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Richard M Reese Richard M Reese
Author Profile Icon Richard M Reese
Richard M Reese
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Preparing Text for Analysis and Tokenization FREE CHAPTER 2. Isolating Sentences within a Document 3. Performing Name Entity Recognition 4. Detecting POS Using Neural Networks 5. Performing Text Classification 6. Finding Relationships within Text 7. Language Identification and Translation 8. Identifying Semantic Similarities within Text 9. Common Text Processing and Generation Tasks 10. Extracting Data for Use in NLP Analysis 11. Creating a Chatbot 12. Installation and Configuration 13. Other Books You May Enjoy

Determining the lexical meaning of a word using OpenNLP

In this recipe, we will use the model we created in the previous recipe to perform lemmatization. We will perform lemmatization on the following sentence:

The girls were leaving the clubhouse for another adventurous afternoon.

In the example, the lemmas for each word in the sentence will be displayed.

Getting ready

To prepare, we need to do the following:

  1. Create a new Maven project
  2. Add the following dependency to the POM file:
<dependency>
<groupId>org.apache.opennlp</groupId>
<artifactId>opennlp-tools</artifactId>
<version>1.9.0</version>
</dependency>

How to do it...

Let's go through the following steps:

  1. Add the following imports to the project:
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import opennlp.tools.lemmatizer.LemmatizerME;
import opennlp.tools.lemmatizer.LemmatizerModel;
  1. Add the following try block to the main method. An input stream and model are created, followed by the instantiation of the lemmatization model:
LemmatizerModel lemmatizerModel = null;
try (InputStream modelInputStream = new FileInputStream(
"C:\\Downloads\\OpenNLP\\en-lemmatizer.bin")) {
lemmatizerModel = new LemmatizerModel(modelInputStream);
LemmatizerME lemmatizer = new LemmatizerME(lemmatizerModel);

} catch (FileNotFoundException e) {
// Handle exception
} catch (IOException e) {
// Handle exception
}

  1. Add the following code to the end of the try block. It sets up arrays holding the words of the sample text and their POS tags. It then performs the lemmatization and displays the results:
String[] tokens = new String[] { 
"The", "girls", "were", "leaving", "the",
"clubhouse", "for", "another", "adventurous",
"afternoon", "." };
String[] posTags = new String[] { "DT", "NNS", "VBD",
"VBG", "DT", "NN", "IN", "DT", "JJ", "NN", "." };
String[] lemmas = lemmatizer.lemmatize(tokens, posTags);
for (int i = 0; i < tokens.length; i++) {
System.out.println(tokens[i] + " - " + lemmas[i]);
}
  1. Upon executing the program, you will get the following output that displays each word and then its lemma:
The - the
girls - girl
were - be
leaving - leave
the - the
clubhouse - clubhouse
for - for
another - another
adventurous - adventurous
afternoon - afternoon
. - .

How it works...

We performed lemmatization on the sentence The girls were leaving the clubhouse for another adventurous afternoon. A LemmatizerModel was declared and instantiated from the en-lemmatizer.bin file. A try-with-resources block was used to obtained an input stream for the file, as shown in the following code:

LemmatizerModel lemmatizerModel = null;
try (InputStream modelInputStream = new FileInputStream(
"C:\\Downloads\\OpenNLP\\en-lemmatizer.bin")) {
lemmatizerModel = new LemmatizerModel(modelInputStream);

Next, the lemmatizer was created using the LemmatizerME class, as shown in the following code:

LemmatizerME lemmatizer = new LemmatizerME(lemmatizerModel);

The following sentence was processed, and is represented as an array of strings. We also need an array of POS tags for the lemmatization process to work. This array was defined in parallel with the sentence array. As we will see in Chapter 4, Detecting POS Using Neural Networks, there are often alternative tags that are possible for a sentence. For this example, we used tags generated by the Cognitive Computation Group's online tool at http://cogcomp.org/page/demo_view/pos:

String[] tokens = new String[] { 
"The", "girls", "were", "leaving", "the",
"clubhouse", "for", "another", "adventurous",
"afternoon", "." };
String[] posTags = new String[] { "DT", "NNS", "VBD",
"VBG", "DT", "NN", "IN", "DT", "JJ", "NN", "." };

The lemmatization then occurred, where the lemmatize method uses the two arrays to build an array of lemmas for each word in the sentence, as shown in the following code:

String[] lemmas = lemmatizer.lemmatize(tokens, posTags);

The lemmas are then displayed, as shown in the following code:

for (int i = 0; i < tokens.length; i++) {
System.out.println(tokens[i] + " - " + lemmas[i]);
}

See also

You have been reading a chapter from
Natural Language Processing with Java Cookbook
Published in: Apr 2019
Publisher: Packt
ISBN-13: 9781789801156
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image