Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Implementing a Decomposition Method

For this recipe, we will implement a matrix decomposition method for linear regression. Specifically we will use the Cholesky decomposition, for which relevant functions exist in TensorFlow.

Getting ready

Implementing inverse methods in the previous recipe can be numerically inefficient in most cases, especially when the matrices get very large. Another approach is to decompose the A matrix and perform matrix operations on the decompositions instead. One such approach is to use the built-in Cholesky decomposition method in TensorFlow. One reason people are so interested in decomposing a matrix into more matrices is because the resulting matrices will have assured properties that allow us to use certain methods efficiently. The Cholesky decomposition decomposes a matrix into a lower and upper triangular matrix, say Getting ready and Getting ready, such that these matrices are transpositions of each other. For further information on the properties of this decomposition, there are...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image