Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence By Example

You're reading from   Artificial Intelligence By Example Acquire advanced AI, machine learning, and deep learning design skills

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781839211539
Length 578 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning 2. Building a Reward Matrix – Designing Your Datasets FREE CHAPTER 3. Machine Intelligence – Evaluation Functions and Numerical Convergence 4. Optimizing Your Solutions with K-Means Clustering 5. How to Use Decision Trees to Enhance K-Means Clustering 6. Innovating AI with Google Translate 7. Optimizing Blockchains with Naive Bayes 8. Solving the XOR Problem with a Feedforward Neural Network 9. Abstract Image Classification with Convolutional Neural Networks (CNNs) 10. Conceptual Representation Learning 11. Combining Reinforcement Learning and Deep Learning 12. AI and the Internet of Things (IoT) 13. Visualizing Networks with TensorFlow 2.x and TensorBoard 14. Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component Analysis (PCA) 15. Setting Up a Cognitive NLP UI/CUI Chatbot 16. Improving the Emotional Intelligence Deficiencies of Chatbots 17. Genetic Algorithms in Hybrid Neural Networks 18. Neuromorphic Computing 19. Quantum Computing 20. Answers to the Questions 21. Other Books You May Enjoy
22. Index

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

Next-generation AI compels us to realize that machines do indeed think. Although machines do not think like us, their thought process has proven its efficiency in many areas. In the past, the belief was that AI would reproduce human thinking processes. Only neuromorphic computing (see Chapter 18, Neuromorphic Computing), remains set on this goal. Most AI has now gone beyond the way humans think, as we will see in this chapter.

The Markov decision process (MDP), a reinforcement learning (RL) algorithm, perfectly illustrates how machines have become intelligent in their own unique way. Humans build their decision process on experience. MDPs are memoryless. Humans use logic and reasoning to think problems through. MDPs apply random decisions 100% of the time. Humans think in words, labeling everything they perceive. MDPs have an unsupervised approach that uses no labels or training data. MDPs boost the machine thought process of self-driving cars (SDCs), translation tools, scheduling software, and more. This memoryless, random, and unlabeled machine thought process marks a historical change in the way a former human problem was solved.

With this realization comes a yet more mind-blowing fact. AI algorithms and hybrid solutions built on IoT, for example, have begun to surpass humans in strategic areas. Although AI cannot replace humans in every field, AI combined with classical automation now occupies key domains: banking, marketing, supply chain management, scheduling, and many other critical areas.

As you will see, starting with this chapter, you can occupy a central role in this new world as an adaptive thinker. You can design AI solutions and implement them. There is no time to waste. In this chapter, we are going to dive quickly and directly into reinforcement learning through the MDP.

Today, AI is essentially mathematics translated into source code, which makes it difficult to learn for traditional developers. However, we will tackle this approach pragmatically.

The goal here is not to take the easy route. We're striving to break complexity into understandable parts and confront them with reality. You are going to find out right from the outset how to apply an adaptive thinker's process that will lead you from an idea to a solution in reinforcement learning, and right into the center of gravity of the next generation of AI.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image