Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Bioinformatics with Python Cookbook

You're reading from   Bioinformatics with Python Cookbook Use modern Python libraries and applications to solve real-world computational biology problems

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781803236421
Length 360 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tiago Antao Tiago Antao
Author Profile Icon Tiago Antao
Tiago Antao
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: Python and the Surrounding Software Ecology 2. Chapter 2: Getting to Know NumPy, pandas, Arrow, and Matplotlib FREE CHAPTER 3. Chapter 3: Next-Generation Sequencing 4. Chapter 4: Advanced NGS Data Processing 5. Chapter 5: Working with Genomes 6. Chapter 6: Population Genetics 7. Chapter 7: Phylogenetics 8. Chapter 8: Using the Protein Data Bank 9. Chapter 9: Bioinformatics Pipelines 10. Chapter 10: Machine Learning for Bioinformatics 11. Chapter 11: Parallel Processing with Dask and Zarr 12. Chapter 12: Functional Programming for Bioinformatics 13. Index 14. Other Books You May Enjoy

Advanced NGS Data Processing

If you work with next-generation sequencing (NGS) data, you know that quality analysis and processing are two of the great time-sinks in getting results. In the first part of this chapter, we will delve deeper into NGS analysis by using a dataset that includes information about relatives – in our case, a mother, a father, and around 20 offspring. This is a common technique for performing quality analysis, as pedigree information will allow us to make inferences on the number of errors that our filtering rules might produce. We will also take the opportunity to use the same dataset to find genomic features based on existing annotations.

The last recipe of this chapter will delve into another advanced topic using NGS data: metagenomics. We will QIIME2, a Python package for metagenomics, to analyze data.

If you are using Docker, please use the tiagoantao/bioinformatics_base image. The QIIME2 content has a special setup process that will be discussed...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image