Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Data Science with SQL Server 2017

You're reading from   Hands-On Data Science with SQL Server 2017 Perform end-to-end data analysis to gain efficient data insight

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781788996341
Length 506 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vladimír Mužný Vladimír Mužný
Author Profile Icon Vladimír Mužný
Vladimír Mužný
Marek Chmel Marek Chmel
Author Profile Icon Marek Chmel
Marek Chmel
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Data Science Overview FREE CHAPTER 2. SQL Server 2017 as a Data Science Platform 3. Data Sources for Analytics 4. Data Transforming and Cleaning with T-SQL 5. Data Exploration and Statistics with T-SQL 6. Custom Aggregations on SQL Server 7. Data Visualization 8. Data Transformations with Other Tools 9. Predictive Model Training and Evaluation 10. Making Predictions 11. Getting It All Together - A Real-World Example 12. Next Steps with Data Science and SQL 13. Other Books You May Enjoy

The need for data transformation

The crucial question is this: why do we need data to be transformed for data science? There are two principal reasons for this. The first of these reasons is to obtain datasets or small amounts of datasets because data science models are commonly based on the statistical population dataset. We can do JOINs in our data before they are analyzed or used for machine learning training, for example, but this often leads to unnecessary complications in the model, and it could also have a performance impact on the training time.

The second reason is a bit more complicated. The world is full of data, and the volume of it is always growing. The previous Chapter 3, Data Sources for Analytics, showed a lot of data sources and data creation methods. Let's summarize the increase of data from a different point of view. We can think about data from the perspective...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image