Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Simulation Modeling with Python

You're reading from   Hands-On Simulation Modeling with Python Develop simulation models to get accurate results and enhance decision-making processes

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838985097
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started with Numerical Simulation
2. Chapter 1: Introducing Simulation Models FREE CHAPTER 3. Chapter 2: Understanding Randomness and Random Numbers 4. Chapter 3: Probability and Data Generation Processes 5. Section 2: Simulation Modeling Algorithms and Techniques
6. Chapter 4: Exploring Monte Carlo Simulations 7. Chapter 5: Simulation-Based Markov Decision Processes 8. Chapter 6: Resampling Methods 9. Chapter 7: Using Simulation to Improve and Optimize Systems 10. Section 3: Real-World Applications
11. Chapter 8: Using Simulation Models for Financial Engineering 12. Chapter 9: Simulating Physical Phenomena Using Neural Networks 13. Chapter 10: Modeling and Simulation for Project Management 14. Chapter 11: What's Next? 15. Other Books You May Enjoy

Introducing the basics of neural networks

ANNs are numerical models developed with the aim of reproducing simple neural activities of the human brain, such as object identification and voice recognition. The structure of an ANN is composed of nodes that, similar to the neurons present in a human brain, are interconnected with each other through weighted connections, which reproduce the synapses between neurons.

The system output is updated until it iteratively converges via the connection weights. The information derived from experimental activities is used as input data and the result processed by the network is returned as an output. The input nodes represent the predictive variables, and the output neurons are represented by the dependent variables. We use the predictive variables to process the dependent variables.

ANNs are very versatile in simulating regression and classification problems. They can learn the process of working out the solution to a problem by analyzing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image