Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering  with Python

You're reading from   Machine Learning Engineering with Python Manage the lifecycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781837631964
Length 462 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to ML Engineering 2. The Machine Learning Development Process FREE CHAPTER 3. From Model to Model Factory 4. Packaging Up 5. Deployment Patterns and Tools 6. Scaling Up 7. Deep Learning, Generative AI, and LLMOps 8. Building an Example ML Microservice 9. Building an Extract, Transform, Machine Learning Use Case 10. Other Books You May Enjoy
11. Index

Building the future with LLMOps

Given the rise in interest in LLMs recently, there has been no shortage of people expressing the desire to integrate these models into all sorts of software systems. For us as ML engineers, this should immediately trigger us to ask the question, “What will that mean operationally?” As discussed throughout this book, the marrying together of operations and development of ML systems is termed MLOps. Working with LLMs is likely to lead to its own interesting challenges, however, and so a new term, LLMOps, has arisen to give this sub-field of MLOps some good marketing.

Is this really any different? I don’t think it is that different, but should be viewed as a sub-field of MLOps with its own additional challenges. Some of the main challenges that I see in this area are:

  • Larger infrastructure, even for fine-tuning: As discussed previously, these models are far too large for typical organizations or teams to consider training...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image