Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R High Performance Programming

You're reading from   R High Performance Programming Overcome performance difficulties in R with a range of exciting techniques and solutions

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783989263
Length 176 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Tjhi W Chandra Tjhi W Chandra
Author Profile Icon Tjhi W Chandra
Tjhi W Chandra
Aloysius Shao Qin Lim Aloysius Shao Qin Lim
Author Profile Icon Aloysius Shao Qin Lim
Aloysius Shao Qin Lim
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Understanding R's Performance – Why Are R Programs Sometimes Slow? FREE CHAPTER 2. Profiling – Measuring Code's Performance 3. Simple Tweaks to Make R Run Faster 4. Using Compiled Code for Greater Speed 5. Using GPUs to Run R Even Faster 6. Simple Tweaks to Use Less RAM 7. Processing Large Datasets with Limited RAM 8. Multiplying Performance with Parallel Computing 9. Offloading Data Processing to Database Systems 10. R and Big Data Index

Implementing task parallel algorithms


Let's now see how to implement a task parallel algorithm using both socket-based and forked clusters. We will look at how to run the same task and different tasks on workers in a cluster.

Running the same task on workers in a cluster

To demonstrate how to run the same task on a cluster, the task for this example is to generate 500 million Poisson random numbers. We will do this by using L'Ecuyer's combined multiple-recursive generator, which is the only random number generator in base R that supports multiple streams to generate random numbers in parallel. The random number generator is selected by calling the RNGkind() function.

Note

We cannot just use any random number generator in parallel because the randomness of the data depends on the algorithm used to generate random data and the seed value given to each parallel task. Most other algorithms were not designed to produce random numbers in multiple parallel streams, and might produce multiple highly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image