In all the ensembles we have learned about so far, we have manipulated the dataset in certain ways and exposed subsets of the data for model building. However, in stacking, we are not going to do anything with the dataset; instead we are going to apply a different technique that involves using multiple ML algorithms instead. In stacking, we build multiple models with various ML algorithms. Each algorithm possesses a unique way of learning the characteristics of data and the final stacked model indirectly incorporates all those unique ways of learning. Stacking gets the combined power of several ML algorithms through getting the final prediction by means of voting or averaging as we do in other types of ensembles.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia