Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Engineering with Python

You're reading from   Data Engineering with Python Work with massive datasets to design data models and automate data pipelines using Python

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781839214189
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Paul Crickard Paul Crickard
Author Profile Icon Paul Crickard
Paul Crickard
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Section 1: Building Data Pipelines – Extract Transform, and Load
2. Chapter 1: What is Data Engineering? FREE CHAPTER 3. Chapter 2: Building Our Data Engineering Infrastructure 4. Chapter 3: Reading and Writing Files 5. Chapter 4: Working with Databases 6. Chapter 5: Cleaning, Transforming, and Enriching Data 7. Chapter 6: Building a 311 Data Pipeline 8. Section 2:Deploying Data Pipelines in Production
9. Chapter 7: Features of a Production Pipeline 10. Chapter 8: Version Control with the NiFi Registry 11. Chapter 9: Monitoring Data Pipelines 12. Chapter 10: Deploying Data Pipelines 13. Chapter 11: Building a Production Data Pipeline 14. Section 3:Beyond Batch – Building Real-Time Data Pipelines
15. Chapter 12: Building a Kafka Cluster 16. Chapter 13: Streaming Data with Apache Kafka 17. Chapter 14: Data Processing with Apache Spark 18. Chapter 15: Real-Time Edge Data with MiNiFi, Kafka, and Spark 19. Other Books You May Enjoy Appendix

Deploying your data pipelines

There are many ways to handle the different environments—development, testing, production—and how you choose to do that is up to what works best with your business practices. Having said that, any strategy you take should involve using the NiFi registry.

Using the simplest strategy

The simplest strategy would be to run NiFi over the network and split the canvas into multiple environments. When you have promoted a process group, you would move it in to the next environment. When you needed to rebuild a data pipeline, you would add it back to development and modify it, then update the production data pipeline to the newest version. Your NiFi instance would look like the following screenshot:

Figure 10.11 – A single NiFi instance working as DEV, TEST, and PROD

Notice in the preceding screenshot that only PROD has a green checkmark. The DEV environment created the processor group, then changes were committed...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image