Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Intelligent Projects Using Python

You're reading from   Intelligent Projects Using Python 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788996921
Length 342 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Santanu Pattanayak Santanu Pattanayak
Author Profile Icon Santanu Pattanayak
Santanu Pattanayak
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Foundations of Artificial Intelligence Based Systems 2. Transfer Learning FREE CHAPTER 3. Neural Machine Translation 4. Style Transfer in Fashion Industry using GANs 5. Video Captioning Application 6. The Intelligent Recommender System 7. Mobile App for Movie Review Sentiment Analysis 8. Conversational AI Chatbots for Customer Service 9. Autonomous Self-Driving Car Through Reinforcement Learning 10. CAPTCHA from a Deep-Learning Perspective 11. Other Books You May Enjoy

Learning the Q value function

For an RL agent to make a decision, it is important for the agent to learn the Q value function. The Q value function can be learned iteratively via Bellman's equation. When the agent starts to interact with the environment, it starts with a random state s(0) and random state of Q values for every state action pair. The agent's action would also be somewhat random, since it has no state Q values to make informed decisions. For each action taken, the environment would return a reward based on which agent starts to build the Q value tables, and improves over time.

At any exposed state s(t) at iteration t the agent would take an action a(t) that maximizes its long-term reward. The Q table holds the long-term reward values, and hence the chosen a(t) would be based on the following heuristics:

The Q value table is also indexed by iteration...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image