Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenGL 4.0 Shading Language Cookbook

You're reading from   OpenGL 4.0 Shading Language Cookbook With over 60 recipes, this Cookbook will teach you both the elementary and finer points of the OpenGL Shading Language, and get you familiar with the specific features of GLSL 4.0. A totally practical, hands-on guide.

Arrow left icon
Product type Paperback
Published in Jul 2011
Publisher Packt
ISBN-13 9781849514767
Length 340 pages
Edition 1st Edition
Tools
Arrow right icon
Toc

Table of Contents (16) Chapters Close

OpenGL 4.0 Shading Language Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with GLSL 4.0 2. The Basics of GLSL Shaders FREE CHAPTER 3. Lighting, Shading Effects, and Optimizations 4. Using Textures 5. Image Processing and Screen Space Techniques 6. Using Geometry and Tessellation Shaders 7. Shadows 8. Using Noise in Shaders 9. Animation and Particles Index

Using deferred shading


Deferred shading is a technique that involves postponing the lighting/shading step to a second pass. We do this (among other reasons) in order to avoid shading a pixel more than once. The basic idea is as follows:

  1. In the first pass, we render the scene, but instead of evaluating the reflection model to determine a fragment color, we simply store all of the geometry information (position, normal, texture coordinate, reflectivity, and so on) in an intermediate set of buffers, collectively called the g-buffer (g for geometry).

  2. In the second pass, we simply read from the g-buffer, evaluate the reflection model, and produce a final color for each pixel.

When deferred shading is used, we avoid evaluating the reflection model for a fragment that will not end up being visible. For example, consider a pixel located in an area where two polygons overlap. The fragment shader may be executed once for each polygon that covers that pixel; however, the resulting color of only one of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image