Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Polars Cookbook

You're reading from   Polars Cookbook Over 60 practical recipes to transform, manipulate, and analyze your data using Python Polars 1.x

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781805121152
Length 394 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Yuki Kakegawa Yuki Kakegawa
Author Profile Icon Yuki Kakegawa
Yuki Kakegawa
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: Getting Started with Python Polars FREE CHAPTER 2. Chapter 2: Reading and Writing Files 3. Chapter 3: An Introduction to Data Analysis in Python Polars 4. Chapter 4: Data Transformation Techniques 5. Chapter 5: Handling Missing Data 6. Chapter 6: Performing String Manipulations 7. Chapter 7: Working with Nested Data Structures 8. Chapter 8: Reshaping and Tidying Data 9. Chapter 9: Time Series Analysis 10. Chapter 10: Interoperability with Other Python Libraries 11. Chapter 11: Working with Common Cloud Data Sources 12. Chapter 12: Testing and Debugging in Polars 13. Index 14. Other Books You May Enjoy

Understanding method chaining

Method chaining is a technique or way of structuring your code. It’s commonly used across DataFrame libraries such as pandas and PySpark. As the name tells you, it means that you chain methods one after another. This makes your code more readable, concise, and maintainable. It follows a natural flow from one operation to another, which makes your code easy to follow. All of that helps you focus on the data transformation logic and problems you’re trying to solve.

The good news is that Polars is a good fit for method chaining. Polars utilizes expressions and other methods that can easily be stacked on each other.

Getting ready

This recipe requires the titanic dataset. Make sure to read it into a DataFrame:

df = pl.read_csv('../data/titanic_dataset.csv')

How to do it...

Let’s say that you’re doing a few operations on the dataset. First, we will predefine the columns that we want to select:

cols = ['Name', 'Sex', 'Age', 'Fare', 'Cabin', 'Pclass', 'Survived']

If you’re not using method chaining, you might want to write code like this:

df = df.select(cols)
df = df.filter(pl.col('Age')>=35)
df = df.sort(by=['Age', 'Name'])

When you use method chaining, it’d look like this:

df = df.select(cols).filter(pl.col('Age')>=35).sort(by=['Age', 'Name'])

To go one step further, let’s stack these methods vertically. This is the preferred way of writing your code with method chaining:

df = (
    df
    .select(cols)
    .filter(pl.col('Age')>=35)
    .sort(by=['Age', 'Name'])
)

All of the preceding code produces the same output:

Figure 1.35 – The output after column selection, filtering, and sorting

Figure 1.35 – The output after column selection, filtering, and sorting

How it works...

The first example I showed defines each method line by line, storing each result in a variable each time. The last example involved method chaining, aligning the beginning of each method vertically. Some users don’t even know that you can stack your methods on top of each other, especially users who are just getting started. You might have a habit of defining your transformations line by line, like in the first example.

Having looked at a few examples, which pattern do you think is best? I’d say the one using method chaining, stacking each method vertically. Aligning the beginning of each method helps with readability. Having all the logic in the same place makes it easier to maintain the code and figure things out later. It also helps you streamline your workflows by making your code more concise and ensuring that it is organized in a logical way.

How does this help with testing and debugging though? You can comment out or add another method within the parentheses to test the result:

df = (
    df
    .select(cols)
    # .filter(pl.col('Age')>=35)
    .sort(by=['Age', 'Name'])
)
df.head()

The preceding code will return the following output:

Figure 1.36 – The first five rows without the filtering condition

Figure 1.36 – The first five rows without the filtering condition

We’ll cover testing and debugging in more detail in Chapter 12, Testing and Debugging in Polars.

One caveat is that when your chain is too long, it may make your code hard to read and work with. This increased complexity that comes with a long chain can make your debugging hard, too. It can become challenging to understand each intermediary step in a long chain. In that case, you should break your logic down into smaller pieces to help reduce the complexity and length of your chain. With all of that said, it all comes down to the fact that a balance is needed to make testing your code feasible.

In the interest of full disclosure, remember that you don’t have an obligation to use method chaining. If it feels more comfortable or appropriate to write your code line by line separately, that’s all good and fine. Method chaining is just another practice, and many people find it helpful. I can confidently say that method chaining has done me more good than harm.

There’s more...

When you stack your methods vertically, you can also use backslashes instead of using parentheses:

df = df \
    .select(cols) \
    .filter(pl.col('Age')>=35) \
    .sort(by=['Age', 'Name'])

I have to say that adding a backslash for each method is a little bit of work. Also, if you comment out the last method in the chain for testing and debugging purposes, it messes up the whole chain because you can’t end your code with a backslash. I’d choose using parentheses over backslashes any day.

See also

These are useful resources to learn more about method chaining:

You have been reading a chapter from
Polars Cookbook
Published in: Aug 2024
Publisher: Packt
ISBN-13: 9781805121152
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image