Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Visualization Cookbook (Second Edition)

You're reading from   Python Data Visualization Cookbook (Second Edition) Visualize data using Python's most popular libraries

Arrow left icon
Product type Paperback
Published in Nov 2015
Publisher
ISBN-13 9781784396695
Length 302 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (11) Chapters Close

Preface 1. Preparing Your Working Environment FREE CHAPTER 2. Knowing Your Data 3. Drawing Your First Plots and Customizing Them 4. More Plots and Customizations 5. Making 3D Visualizations 6. Plotting Charts with Images and Maps 7. Using the Right Plots to Understand Data 8. More on matplotlib Gems 9. Visualizations on the Clouds with Plot.ly Index

Installing a requests module

Most of the data that we need now is available over HTTP or similar protocol, so we need something to get it. Python library requests make the job easy.

Even though Python comes with the urllib2 module for work with remote resources and supporting HTTP capabilities, it requires a lot of work to get the basic tasks done.

A requests module brings a new API that makes the use of web services seamless and pain free. Lots of the HTTP 1.1 stuff is hidden away and exposed only if you need it to behave differently than default.

How to do it...

Using pip is the best way to install requests. Use the following command for the same:

$ pip install requests

That's it. This can also be done inside your virtualenv, if you don't need requests for every project or want to support different requests versions for each project.

Just to get you ahead quickly, here's a small example on how to use requests:

import requests
r = requests.get('http://github.com/timeline.json')
print r.content

How it works...

We sent the GET HTTP request to a URI at www.github.com that returns a JSON-formatted timeline of activity on GitHub (you can see HTML version of that timeline at https://github.com/timeline). After the response is successfully read, the r object contains content and other properties of the response (response code, cookies set, header metadata, and even the request we sent in order to get this response).

You have been reading a chapter from
Python Data Visualization Cookbook (Second Edition)
Published in: Nov 2015
Publisher:
ISBN-13: 9781784396695
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image