We started this chapter by discussing advanced data processing techniques such as resampling, group-by, and moving window computations to obtain aggregate statistics from a time series. Next, we described stationary time series and discussed statistical tests of hypothesis such as Ljung-Box test and Augmented Dickey Fuller test to verify stationarity of a time series. Stationarizing non-stationary time series is important for time series forecasting. Therefore, we discussed two different approaches of stationarizing time series.
Firstly, the method of differencing, which covers first, second, and seasonal differencing, has been described for stationarizing a non-stationary time series. Secondly, time series decomposition using the statsmodels.tsa API for additive and multiplicative models has been discussed.
In the next chapter, we delve deeper in techniques of exponential...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia