Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Python Programming for IoT

You're reading from   Practical Python Programming for IoT Build advanced IoT projects using a Raspberry Pi 4, MQTT, RESTful APIs, WebSockets, and Python 3

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781838982461
Length 516 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Gary Smart Gary Smart
Author Profile Icon Gary Smart
Gary Smart
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Programming with Python and the Raspberry Pi
2. Setting Up your Development Environment FREE CHAPTER 3. Getting Started with Python and IoT 4. Networking with RESTful APIs and Web Sockets Using Flask 5. Networking with MQTT, Python, and the Mosquitto MQTT Broker 6. Section 2: Practical Electronics for Interacting with the Physical World
7. Connecting Your Raspberry Pi to the Physical World 8. Electronics 101 for the Software Engineer 9. Section 3: IoT Playground - Practical Examples to Interact with the Physical World
10. Turning Things On and Off 11. Lights, Indicators, and Displaying Information 12. Measuring Temperature, Humidity, and Light Levels 13. Movement with Servos, Motors, and Steppers 14. Measuring Distance and Detecting Movement 15. Advanced IoT Programming Concepts - Threads, AsyncIO, and Event Loops 16. IoT Visualization and Automation Platforms 17. Tying It All Together - An IoT Christmas Tree 18. Assessments 19. Other Books You May Enjoy

motor_class.py

First, we see the Motor class definition and its constructor:

class Motor:

def __init__(self, pi, enable_gpio, logic_1_gpio, logic_2_gpio):

self.pi = pi
self.enable_gpio = enable_gpio
self.logic_1_gpio = logic_1_gpio
self.logic_2_gpio = logic_2_gpio

pi.set_PWM_range(self.enable_gpio, 100) # speed is 0..100 # (1)

# Set default state - motor not spinning and
# set for right direction.
self.set_speed(0) # Motor off # (2)
self.right()

At line 1, we are defining the PiGPIO PWM duty cycle range for the enable pin to be in the range 0..100. This defines the maximum range value (that is, 100) that we can use with the set_speed() function that we'll come to shortly.

The range 0..100 means we have 101 discrete integer PWM steps, which maps conveniently to a 0% to 100% duty cycle. If you specify a higher number, this does not mean more duty cycles (or more motor speed); it just changes the granularity...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image