In this chapter, we understood how to implement a convolution neural network classifier in Keras. You now have a brief understanding of what convolution, average, max pooling, and dropout are, and you also built a deep model. You understood how to reduce overfitting as well as how to generate more/validation in data to build a generalizable model when you have less data than you need. Finally, we assessed the model's performance on test data and determined that we succeeded in achieving our goal. We ended this chapter by introducing you to autoencoders.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia