Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

Conclusion


This chapter discussed the general principles behind GANs, to give you a foundation to the more advanced topics we'll now move on to, including Improved GANs, Disentangled Representations GANs, and Cross-Doman GANs. We started this chapter by understanding how GANs are made up of two networks called generator and discriminator. The role of the discriminator is to discriminate between real and fake signals. The aim of the generator is to fool the discriminator. The generator is normally combined with the discriminator to form an adversarial network. It is through training the adversarial network that the generator learns how to produce fake signals that can trick the discriminator.

We also learned how GANs are easy to build but notoriously difficult to train. Two example implementations in Keras were presented. DCGAN demonstrated that it is possible to train GANs to generate fake images using deep CNNs. The fake images are MNIST digits. However, the DCGAN generator has no control...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image