Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with Python

You're reading from   Applied Unsupervised Learning with Python Discover hidden patterns and relationships in unstructured data with Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781789952292
Length 482 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Unsupervised Learning with Python
Preface
1. Introduction to Clustering FREE CHAPTER 2. Hierarchical Clustering 3. Neighborhood Approaches and DBSCAN 4. Dimension Reduction and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Introduction


This chapter is the final installment in the micro-series on dimensionality reduction techniques and transformations. Our previous chapters in this series have described a number of different methods for reducing the dimensionality of a dataset as a means of either cleaning the data, reducing its size for computational efficiency, or for extracting the most important information available within the dataset. While we have demonstrated many methods for reducing high-dimensional datasets, in many cases, we are unable to reduce the number of dimensions to a size that can be visualized, that is, two or three dimensions, without excessively degrading the quality of the data. Consider the MNIST dataset that we used in Chapter 5, Autoencoders, which is a collection of digitized handwritten digits of the numbers 0 through 9. Each image is 28 x 28 pixels in size, providing 784 individual dimensions or features. If we were to reduce these 784 dimensions down to 2 or 3 for visualization...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image