Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Causal Inference in R

You're reading from   Causal Inference in R Decipher complex relationships with advanced R techniques for data-driven decision-making

Arrow left icon
Product type Paperback
Published in Nov 2024
Publisher Packt
ISBN-13 9781837639021
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Subhajit Das Subhajit Das
Author Profile Icon Subhajit Das
Subhajit Das
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1:Foundations of Causal Inference
2. Chapter 1: Introducing Causal Inference FREE CHAPTER 3. Chapter 2: Unraveling Confounding and Associations 4. Chapter 3: Initiating R with a Basic Causal Inference Example 5. Part 2: Practical Applications and Core Methods
6. Chapter 4: Constructing Causality Models with Graphs 7. Chapter 5: Navigating Causal Inference through Directed Acyclic Graphs 8. Chapter 6: Employing Propensity Score Techniques 9. Chapter 7: Employing Regression Approaches for Causal Inference 10. Chapter 8: Executing A/B Testing and Controlled Experiments 11. Chapter 9: Implementing Doubly Robust Estimation 12. Part 3: Advanced Topics and Cutting-Edge Methods
13. Chapter 10: Analyzing Instrumental Variables 14. Chapter 11: Investigating Mediation Analysis 15. Chapter 12: Exploring Sensitivity Analysis 16. Chapter 13: Scrutinizing Heterogeneity in Causal Inference 17. Chapter 14: Harnessing Causal Forests and Machine Learning Methods 18. Chapter 15: Implementing Causal Discovery in R 19. Index 20. Other Books You May Enjoy

Weighting in PSM using R

Inverse probability weighting (IPW) is adopted to adjust for confounding in causality assessment in observational studies. It is grounded in the framework of potential outcomes and relies on the use of – you guessed it – propensity scores.

Once the propensity scores are estimated, each individual is assigned a weight. This is achieved by reweighting each data point using propensity scores, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>e</mml:mi><mml:mo>(</mml:mo><mml:mi>H</mml:mi><mml:mo>)</mml:mo></mml:math>, which are the probabilities of receiving the treatment given the confounders. Treated individuals are reweighted by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mo>(</mml:mo><mml:mi>e</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>H</mml:mi></mml:mrow></mml:mfenced></mml:math> and untreated ones by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:mi>e</mml:mi><mml:mo>(</mml:mo><mml:mi>H</mml:mi><mml:mo>)</mml:mo><mml:mo>)</mml:mo></mml:math>. The ATE is then estimated by calculating the difference in expected outcomes between treated and untreated groups in this adjusted pseudo-population, essentially balancing out the influence of confounding variables to reveal the treatment’s true impact.

These weights are designed to create a synthetic sample in which the distribution of covariates is independent of treatment assignment, mimicking a randomized...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image